{"title":"基于双输入特征融合网络的体绘制实时神经去噪","authors":"Chunxiao Xu, Xinran Xu, Jiatian Zhang, Yufei Liu, Yiheng Cao, Lingxiao Zhao","doi":"10.1111/cgf.70276","DOIUrl":null,"url":null,"abstract":"<p>Direct volume rendering (DVR) is a widely used technique in the visualisation of volumetric data. As an important DVR technique, volumetric path tracing (VPT) simulates light transport to produce realistic rendering results, which provides enhanced perception and understanding for users, especially in the field of medical imaging. VPT, based on the Monte Carlo (MC) method, typically requires a large number of samples to generate noise-free results. However, in real-time applications, only a limited number of samples per pixel is allowed and significant noise can be created. This paper introduces a novel neural denoising approach that utilises a new feature fusion method for VPT. Our method uses a feature decomposition technique that separates radiance into components according to noise levels. Our new decomposition technique mitigates biases found in the contemporary decoupling denoising algorithm and shows better utilisation of samples. A lightweight dual-input network is designed to correlate these components with noise-free ground truth. Additionally, for denoising sequences of video frames, we develop a learning-based temporal method that calculates temporal weight maps, blending reprojected results of previous frames with spatially denoised current frames. Comparative results demonstrate that our network performs faster inference than existing methods and can produce denoised output of higher quality in real time.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Neural Denoising for Volume Rendering Using Dual-Input Feature Fusion Network\",\"authors\":\"Chunxiao Xu, Xinran Xu, Jiatian Zhang, Yufei Liu, Yiheng Cao, Lingxiao Zhao\",\"doi\":\"10.1111/cgf.70276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Direct volume rendering (DVR) is a widely used technique in the visualisation of volumetric data. As an important DVR technique, volumetric path tracing (VPT) simulates light transport to produce realistic rendering results, which provides enhanced perception and understanding for users, especially in the field of medical imaging. VPT, based on the Monte Carlo (MC) method, typically requires a large number of samples to generate noise-free results. However, in real-time applications, only a limited number of samples per pixel is allowed and significant noise can be created. This paper introduces a novel neural denoising approach that utilises a new feature fusion method for VPT. Our method uses a feature decomposition technique that separates radiance into components according to noise levels. Our new decomposition technique mitigates biases found in the contemporary decoupling denoising algorithm and shows better utilisation of samples. A lightweight dual-input network is designed to correlate these components with noise-free ground truth. Additionally, for denoising sequences of video frames, we develop a learning-based temporal method that calculates temporal weight maps, blending reprojected results of previous frames with spatially denoised current frames. Comparative results demonstrate that our network performs faster inference than existing methods and can produce denoised output of higher quality in real time.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70276\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70276","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Real-time Neural Denoising for Volume Rendering Using Dual-Input Feature Fusion Network
Direct volume rendering (DVR) is a widely used technique in the visualisation of volumetric data. As an important DVR technique, volumetric path tracing (VPT) simulates light transport to produce realistic rendering results, which provides enhanced perception and understanding for users, especially in the field of medical imaging. VPT, based on the Monte Carlo (MC) method, typically requires a large number of samples to generate noise-free results. However, in real-time applications, only a limited number of samples per pixel is allowed and significant noise can be created. This paper introduces a novel neural denoising approach that utilises a new feature fusion method for VPT. Our method uses a feature decomposition technique that separates radiance into components according to noise levels. Our new decomposition technique mitigates biases found in the contemporary decoupling denoising algorithm and shows better utilisation of samples. A lightweight dual-input network is designed to correlate these components with noise-free ground truth. Additionally, for denoising sequences of video frames, we develop a learning-based temporal method that calculates temporal weight maps, blending reprojected results of previous frames with spatially denoised current frames. Comparative results demonstrate that our network performs faster inference than existing methods and can produce denoised output of higher quality in real time.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.