Xiaotang Zhang, Ziyi Chang, Qianhui Men, Hubert P. H. Shum
{"title":"基于意图引导的实时可控反应性运动合成","authors":"Xiaotang Zhang, Ziyi Chang, Qianhui Men, Hubert P. H. Shum","doi":"10.1111/cgf.70222","DOIUrl":null,"url":null,"abstract":"<p>We propose a real-time method for reactive motion synthesis based on the known trajectory of input character, predicting instant reactions using only historical, user-controlled motions. Our method handles the uncertainty of future movements by introducing an intention predictor, which forecasts key joint intentions to make pose prediction more deterministic from the historical interaction. The intention is later encoded into the latent space of its reactive motion, matched with a codebook which represents mappings between input and output. It samples from the categorical distribution for pose generation and strengthens model robustness through adversarial training. Unlike previous offline approaches, the system can recursively generate intentions and reactive motions using feedback from earlier steps, enabling real-time, long-term realistic interactive synthesis. Both quantitative and qualitative experiments show our approach outperforms other matching-based motion synthesis approaches, delivering superior stability and generalisability. In our method, user can also actively influence the outcome by controlling the moving directions, creating a personalised interaction path that deviates from predefined trajectories.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70222","citationCount":"0","resultStr":"{\"title\":\"Real-Time and Controllable Reactive Motion Synthesis via Intention Guidance\",\"authors\":\"Xiaotang Zhang, Ziyi Chang, Qianhui Men, Hubert P. H. Shum\",\"doi\":\"10.1111/cgf.70222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a real-time method for reactive motion synthesis based on the known trajectory of input character, predicting instant reactions using only historical, user-controlled motions. Our method handles the uncertainty of future movements by introducing an intention predictor, which forecasts key joint intentions to make pose prediction more deterministic from the historical interaction. The intention is later encoded into the latent space of its reactive motion, matched with a codebook which represents mappings between input and output. It samples from the categorical distribution for pose generation and strengthens model robustness through adversarial training. Unlike previous offline approaches, the system can recursively generate intentions and reactive motions using feedback from earlier steps, enabling real-time, long-term realistic interactive synthesis. Both quantitative and qualitative experiments show our approach outperforms other matching-based motion synthesis approaches, delivering superior stability and generalisability. In our method, user can also actively influence the outcome by controlling the moving directions, creating a personalised interaction path that deviates from predefined trajectories.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70222\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70222","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Real-Time and Controllable Reactive Motion Synthesis via Intention Guidance
We propose a real-time method for reactive motion synthesis based on the known trajectory of input character, predicting instant reactions using only historical, user-controlled motions. Our method handles the uncertainty of future movements by introducing an intention predictor, which forecasts key joint intentions to make pose prediction more deterministic from the historical interaction. The intention is later encoded into the latent space of its reactive motion, matched with a codebook which represents mappings between input and output. It samples from the categorical distribution for pose generation and strengthens model robustness through adversarial training. Unlike previous offline approaches, the system can recursively generate intentions and reactive motions using feedback from earlier steps, enabling real-time, long-term realistic interactive synthesis. Both quantitative and qualitative experiments show our approach outperforms other matching-based motion synthesis approaches, delivering superior stability and generalisability. In our method, user can also actively influence the outcome by controlling the moving directions, creating a personalised interaction path that deviates from predefined trajectories.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.