视频中的畜群:从宏观运动数据中学习微观畜群模型

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Xianjin Gong, James Gain, Damien Rohmer, Sixtine Lyonnet, Julien Pettré, Marie-Paule Cani
{"title":"视频中的畜群:从宏观运动数据中学习微观畜群模型","authors":"Xianjin Gong,&nbsp;James Gain,&nbsp;Damien Rohmer,&nbsp;Sixtine Lyonnet,&nbsp;Julien Pettré,&nbsp;Marie-Paule Cani","doi":"10.1111/cgf.70225","DOIUrl":null,"url":null,"abstract":"<p>We present a method for animating herds that automatically tunes a microscopic herd model based on a short video clip of real animals. Our method handles videos with dense herds, where individual animal motion cannot be separated out. Our contribution is a novel framework for extracting macroscopic herd behaviour from such video clips, and then deriving the microscopic agent parameters that best match this behaviour.</p><p>To support this learning process, we extend standard agent models to provide a separation between leaders and followers, better match the occlusion and field-of-view limitations of real animals, support differentiable parameter optimization and improve authoring control. We validate the method by showing that once optimized, the social force and perception parameters of the resulting herd model are accurate enough to predict subsequent frames in the video, even for macroscopic properties not directly incorporated in the optimization process. Furthermore, the extracted herding characteristics can be applied to any terrain with a palette and region-painting approach that generalizes to different herd sizes and leader trajectories. This enables the authoring of herd animations in new environments while preserving learned behaviour.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Herds From Video: Learning a Microscopic Herd Model From Macroscopic Motion Data\",\"authors\":\"Xianjin Gong,&nbsp;James Gain,&nbsp;Damien Rohmer,&nbsp;Sixtine Lyonnet,&nbsp;Julien Pettré,&nbsp;Marie-Paule Cani\",\"doi\":\"10.1111/cgf.70225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a method for animating herds that automatically tunes a microscopic herd model based on a short video clip of real animals. Our method handles videos with dense herds, where individual animal motion cannot be separated out. Our contribution is a novel framework for extracting macroscopic herd behaviour from such video clips, and then deriving the microscopic agent parameters that best match this behaviour.</p><p>To support this learning process, we extend standard agent models to provide a separation between leaders and followers, better match the occlusion and field-of-view limitations of real animals, support differentiable parameter optimization and improve authoring control. We validate the method by showing that once optimized, the social force and perception parameters of the resulting herd model are accurate enough to predict subsequent frames in the video, even for macroscopic properties not directly incorporated in the optimization process. Furthermore, the extracted herding characteristics can be applied to any terrain with a palette and region-painting approach that generalizes to different herd sizes and leader trajectories. This enables the authoring of herd animations in new environments while preserving learned behaviour.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70225\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70225","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于真实动物的短视频剪辑自动调整微观牛群模型的畜群动画方法。我们的方法处理密集兽群的视频,其中单个动物的运动无法分离。我们的贡献是从这些视频片段中提取宏观群体行为的新框架,然后推导出最符合这种行为的微观主体参数。为了支持这一学习过程,我们扩展了标准的智能体模型,以提供领导者和追随者之间的分离,更好地匹配真实动物的遮挡和视野限制,支持可微参数优化并改进创作控制。我们通过表明,一旦优化,所得到的群体模型的社会力量和感知参数足够准确,可以预测视频中的后续帧,甚至对于未直接纳入优化过程的宏观属性也是如此。此外,通过调色板和区域绘制方法,提取的羊群特征可以应用于任何地形,从而概括出不同的羊群规模和领导者轨迹。这使得在新环境中创作群体动画,同时保留学习行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Herds From Video: Learning a Microscopic Herd Model From Macroscopic Motion Data

Herds From Video: Learning a Microscopic Herd Model From Macroscopic Motion Data

We present a method for animating herds that automatically tunes a microscopic herd model based on a short video clip of real animals. Our method handles videos with dense herds, where individual animal motion cannot be separated out. Our contribution is a novel framework for extracting macroscopic herd behaviour from such video clips, and then deriving the microscopic agent parameters that best match this behaviour.

To support this learning process, we extend standard agent models to provide a separation between leaders and followers, better match the occlusion and field-of-view limitations of real animals, support differentiable parameter optimization and improve authoring control. We validate the method by showing that once optimized, the social force and perception parameters of the resulting herd model are accurate enough to predict subsequent frames in the video, even for macroscopic properties not directly incorporated in the optimization process. Furthermore, the extracted herding characteristics can be applied to any terrain with a palette and region-painting approach that generalizes to different herd sizes and leader trajectories. This enables the authoring of herd animations in new environments while preserving learned behaviour.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信