Xianjin Gong, James Gain, Damien Rohmer, Sixtine Lyonnet, Julien Pettré, Marie-Paule Cani
{"title":"视频中的畜群:从宏观运动数据中学习微观畜群模型","authors":"Xianjin Gong, James Gain, Damien Rohmer, Sixtine Lyonnet, Julien Pettré, Marie-Paule Cani","doi":"10.1111/cgf.70225","DOIUrl":null,"url":null,"abstract":"<p>We present a method for animating herds that automatically tunes a microscopic herd model based on a short video clip of real animals. Our method handles videos with dense herds, where individual animal motion cannot be separated out. Our contribution is a novel framework for extracting macroscopic herd behaviour from such video clips, and then deriving the microscopic agent parameters that best match this behaviour.</p><p>To support this learning process, we extend standard agent models to provide a separation between leaders and followers, better match the occlusion and field-of-view limitations of real animals, support differentiable parameter optimization and improve authoring control. We validate the method by showing that once optimized, the social force and perception parameters of the resulting herd model are accurate enough to predict subsequent frames in the video, even for macroscopic properties not directly incorporated in the optimization process. Furthermore, the extracted herding characteristics can be applied to any terrain with a palette and region-painting approach that generalizes to different herd sizes and leader trajectories. This enables the authoring of herd animations in new environments while preserving learned behaviour.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Herds From Video: Learning a Microscopic Herd Model From Macroscopic Motion Data\",\"authors\":\"Xianjin Gong, James Gain, Damien Rohmer, Sixtine Lyonnet, Julien Pettré, Marie-Paule Cani\",\"doi\":\"10.1111/cgf.70225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a method for animating herds that automatically tunes a microscopic herd model based on a short video clip of real animals. Our method handles videos with dense herds, where individual animal motion cannot be separated out. Our contribution is a novel framework for extracting macroscopic herd behaviour from such video clips, and then deriving the microscopic agent parameters that best match this behaviour.</p><p>To support this learning process, we extend standard agent models to provide a separation between leaders and followers, better match the occlusion and field-of-view limitations of real animals, support differentiable parameter optimization and improve authoring control. We validate the method by showing that once optimized, the social force and perception parameters of the resulting herd model are accurate enough to predict subsequent frames in the video, even for macroscopic properties not directly incorporated in the optimization process. Furthermore, the extracted herding characteristics can be applied to any terrain with a palette and region-painting approach that generalizes to different herd sizes and leader trajectories. This enables the authoring of herd animations in new environments while preserving learned behaviour.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70225\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70225","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Herds From Video: Learning a Microscopic Herd Model From Macroscopic Motion Data
We present a method for animating herds that automatically tunes a microscopic herd model based on a short video clip of real animals. Our method handles videos with dense herds, where individual animal motion cannot be separated out. Our contribution is a novel framework for extracting macroscopic herd behaviour from such video clips, and then deriving the microscopic agent parameters that best match this behaviour.
To support this learning process, we extend standard agent models to provide a separation between leaders and followers, better match the occlusion and field-of-view limitations of real animals, support differentiable parameter optimization and improve authoring control. We validate the method by showing that once optimized, the social force and perception parameters of the resulting herd model are accurate enough to predict subsequent frames in the video, even for macroscopic properties not directly incorporated in the optimization process. Furthermore, the extracted herding characteristics can be applied to any terrain with a palette and region-painting approach that generalizes to different herd sizes and leader trajectories. This enables the authoring of herd animations in new environments while preserving learned behaviour.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.