Hi3DFace:从单个遮挡图像重建高逼真的3D人脸

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Dongjin Huang, Yongsheng Shi, Jiantao Qu, Jinhua Liu, Wen Tang
{"title":"Hi3DFace:从单个遮挡图像重建高逼真的3D人脸","authors":"Dongjin Huang,&nbsp;Yongsheng Shi,&nbsp;Jiantao Qu,&nbsp;Jinhua Liu,&nbsp;Wen Tang","doi":"10.1111/cgf.70277","DOIUrl":null,"url":null,"abstract":"<p>We propose Hi3DFace, a novel framework for simultaneous de-occlusion and high-fidelity 3D face reconstruction. To address real-world occlusions, we construct a diverse facial dataset by simulating common obstructions and present TMANet, a transformer-based multi-scale attention network that effectively removes occlusions and restores clean face images. For the 3D face reconstruction stage, we propose a coarse-medium-fine self-supervised scheme. In the coarse reconstruction pipeline, we adopt a face regression network to predict 3DMM coefficients for generating a smooth 3D face. In the medium-scale reconstruction pipeline, we propose a novel depth displacement network, DDFTNet, to remove noise and restore rich details to the smooth 3D geometry. In the fine-scale reconstruction pipeline, we design a GCN (graph convolutional network) refiner to enhance the fidelity of 3D textures. Additionally, a light-aware network (LightNet) is proposed to distil lighting parameters, ensuring illumination consistency between reconstructed 3D faces and input images. Extensive experimental results demonstrate that the proposed Hi3DFace significantly outperforms state-of-the-art reconstruction methods on four public datasets, and five constructed occlusion-type datasets. Hi3DFace achieves robustness and effectiveness in removing occlusions and reconstructing 3D faces from real-world occluded facial images.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hi3DFace: High-Realistic 3D Face Reconstruction From a Single Occluded Image\",\"authors\":\"Dongjin Huang,&nbsp;Yongsheng Shi,&nbsp;Jiantao Qu,&nbsp;Jinhua Liu,&nbsp;Wen Tang\",\"doi\":\"10.1111/cgf.70277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose Hi3DFace, a novel framework for simultaneous de-occlusion and high-fidelity 3D face reconstruction. To address real-world occlusions, we construct a diverse facial dataset by simulating common obstructions and present TMANet, a transformer-based multi-scale attention network that effectively removes occlusions and restores clean face images. For the 3D face reconstruction stage, we propose a coarse-medium-fine self-supervised scheme. In the coarse reconstruction pipeline, we adopt a face regression network to predict 3DMM coefficients for generating a smooth 3D face. In the medium-scale reconstruction pipeline, we propose a novel depth displacement network, DDFTNet, to remove noise and restore rich details to the smooth 3D geometry. In the fine-scale reconstruction pipeline, we design a GCN (graph convolutional network) refiner to enhance the fidelity of 3D textures. Additionally, a light-aware network (LightNet) is proposed to distil lighting parameters, ensuring illumination consistency between reconstructed 3D faces and input images. Extensive experimental results demonstrate that the proposed Hi3DFace significantly outperforms state-of-the-art reconstruction methods on four public datasets, and five constructed occlusion-type datasets. Hi3DFace achieves robustness and effectiveness in removing occlusions and reconstructing 3D faces from real-world occluded facial images.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70277\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70277","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们提出Hi3DFace,一个同时去遮挡和高保真三维人脸重建的新框架。为了解决现实世界的遮挡问题,我们通过模拟常见障碍物构建了多样化的面部数据集,并提出了TMANet,这是一种基于变压器的多尺度注意力网络,可以有效地去除遮挡并恢复干净的面部图像。在三维人脸重建阶段,我们提出了一种粗-中-精自监督方案。在粗重建管道中,我们采用人脸回归网络预测3DMM系数,生成光滑的三维人脸。在中等尺度重建管道中,我们提出了一种新的深度位移网络DDFTNet,以去除噪声并将丰富的细节恢复到光滑的三维几何形状。在精细尺度重建管道中,我们设计了一个GCN(图卷积网络)细化器来提高三维纹理的保真度。此外,提出了一种光感知网络(LightNet)来提取照明参数,以确保重建的三维人脸与输入图像之间的照明一致性。大量的实验结果表明,所提出的Hi3DFace在4个公共数据集和5个构建的闭塞类型数据集上明显优于目前最先进的重建方法。Hi3DFace在去除遮挡和从真实世界被遮挡的面部图像重建3D面部方面实现了鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hi3DFace: High-Realistic 3D Face Reconstruction From a Single Occluded Image

Hi3DFace: High-Realistic 3D Face Reconstruction From a Single Occluded Image

We propose Hi3DFace, a novel framework for simultaneous de-occlusion and high-fidelity 3D face reconstruction. To address real-world occlusions, we construct a diverse facial dataset by simulating common obstructions and present TMANet, a transformer-based multi-scale attention network that effectively removes occlusions and restores clean face images. For the 3D face reconstruction stage, we propose a coarse-medium-fine self-supervised scheme. In the coarse reconstruction pipeline, we adopt a face regression network to predict 3DMM coefficients for generating a smooth 3D face. In the medium-scale reconstruction pipeline, we propose a novel depth displacement network, DDFTNet, to remove noise and restore rich details to the smooth 3D geometry. In the fine-scale reconstruction pipeline, we design a GCN (graph convolutional network) refiner to enhance the fidelity of 3D textures. Additionally, a light-aware network (LightNet) is proposed to distil lighting parameters, ensuring illumination consistency between reconstructed 3D faces and input images. Extensive experimental results demonstrate that the proposed Hi3DFace significantly outperforms state-of-the-art reconstruction methods on four public datasets, and five constructed occlusion-type datasets. Hi3DFace achieves robustness and effectiveness in removing occlusions and reconstructing 3D faces from real-world occluded facial images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信