重新思考影响分析:确保公平性和一致性的协议

IF 5
Guanyu Hu;Dimitrios Kollias;Eleni Papadopoulou;Paraskevi Tzouveli;Jie Wei;Xinyu Yang
{"title":"重新思考影响分析:确保公平性和一致性的协议","authors":"Guanyu Hu;Dimitrios Kollias;Eleni Papadopoulou;Paraskevi Tzouveli;Jie Wei;Xinyu Yang","doi":"10.1109/TBIOM.2025.3550000","DOIUrl":null,"url":null,"abstract":"Evaluating affect analysis methods presents challenges due to inconsistencies in database partitioning and evaluation protocols, leading to unfair and biased results. Previous studies claim continuous performance improvements, but our findings challenge such assertions. Using these insights, we propose a unified protocol for database partitioning that ensures fairness and comparability. Specifically, our contributions include extending detailed demographic annotations (in terms of race, gender, and age) for six commonly used affective databases, providing fairness evaluation metrics, and establishing a common framework for expression recognition, action unit detection, and valence-arousal estimation. Additionally, we conduct extensive experiments using state-of-the-art and baseline methods under the new protocol, revealing previously unobserved fairness discrepancies and biases. We also rerun the methods with the new protocol and introduce new leaderboards to encourage future research in affect recognition with fairer comparisons. Our annotations, codes and pre-trained models are available here.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"7 4","pages":"914-923"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking Affect Analysis: A Protocol for Ensuring Fairness and Consistency\",\"authors\":\"Guanyu Hu;Dimitrios Kollias;Eleni Papadopoulou;Paraskevi Tzouveli;Jie Wei;Xinyu Yang\",\"doi\":\"10.1109/TBIOM.2025.3550000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluating affect analysis methods presents challenges due to inconsistencies in database partitioning and evaluation protocols, leading to unfair and biased results. Previous studies claim continuous performance improvements, but our findings challenge such assertions. Using these insights, we propose a unified protocol for database partitioning that ensures fairness and comparability. Specifically, our contributions include extending detailed demographic annotations (in terms of race, gender, and age) for six commonly used affective databases, providing fairness evaluation metrics, and establishing a common framework for expression recognition, action unit detection, and valence-arousal estimation. Additionally, we conduct extensive experiments using state-of-the-art and baseline methods under the new protocol, revealing previously unobserved fairness discrepancies and biases. We also rerun the methods with the new protocol and introduce new leaderboards to encourage future research in affect recognition with fairer comparisons. Our annotations, codes and pre-trained models are available here.\",\"PeriodicalId\":73307,\"journal\":{\"name\":\"IEEE transactions on biometrics, behavior, and identity science\",\"volume\":\"7 4\",\"pages\":\"914-923\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biometrics, behavior, and identity science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10919136/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10919136/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于数据库分区和评估协议的不一致性,导致评估影响分析方法的结果不公平和有偏差,这给评估影响分析方法带来了挑战。以前的研究声称性能会持续提高,但我们的研究结果对这种说法提出了质疑。利用这些见解,我们提出了一个统一的数据库分区协议,以确保公平性和可比性。具体来说,我们的贡献包括为六个常用的情感数据库扩展详细的人口统计注释(根据种族,性别和年龄),提供公平性评估指标,并建立一个用于表情识别,动作单元检测和价值唤醒估计的通用框架。此外,我们在新协议下使用最先进的基线方法进行了广泛的实验,揭示了以前未观察到的公平性差异和偏差。我们还用新协议重新运行了这些方法,并引入了新的排行榜,以鼓励未来在更公平的比较中进行情感识别的研究。我们的注释、代码和预训练模型可以在这里获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rethinking Affect Analysis: A Protocol for Ensuring Fairness and Consistency
Evaluating affect analysis methods presents challenges due to inconsistencies in database partitioning and evaluation protocols, leading to unfair and biased results. Previous studies claim continuous performance improvements, but our findings challenge such assertions. Using these insights, we propose a unified protocol for database partitioning that ensures fairness and comparability. Specifically, our contributions include extending detailed demographic annotations (in terms of race, gender, and age) for six commonly used affective databases, providing fairness evaluation metrics, and establishing a common framework for expression recognition, action unit detection, and valence-arousal estimation. Additionally, we conduct extensive experiments using state-of-the-art and baseline methods under the new protocol, revealing previously unobserved fairness discrepancies and biases. We also rerun the methods with the new protocol and introduce new leaderboards to encourage future research in affect recognition with fairer comparisons. Our annotations, codes and pre-trained models are available here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信