sobolev - slobodecki空间中尖锐Hardy不等式的几何逼近

IF 1.3 2区 数学 Q1 MATHEMATICS
Francesca Bianchi , Giorgio Stefani , Anna Chiara Zagati
{"title":"sobolev - slobodecki空间中尖锐Hardy不等式的几何逼近","authors":"Francesca Bianchi ,&nbsp;Giorgio Stefani ,&nbsp;Anna Chiara Zagati","doi":"10.1016/j.na.2025.113948","DOIUrl":null,"url":null,"abstract":"<div><div>We give a partial negative answer to a question left open in a previous work by Brasco and the first and third-named authors concerning the sharp constant in the fractional Hardy inequality on convex sets. Our approach has a geometrical flavor and equivalently reformulates the sharp constant in the limit case <span><math><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></math></span> as the Cheeger constant for the fractional perimeter and the Lebesgue measure with a suitable weight. As a by-product, we obtain new lower bounds on the sharp constant in the 1-dimensional case, even for non-convex sets, some of which optimal in the case <span><math><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113948"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geometrical approach to the sharp Hardy inequality in Sobolev–Slobodeckiĭ spaces\",\"authors\":\"Francesca Bianchi ,&nbsp;Giorgio Stefani ,&nbsp;Anna Chiara Zagati\",\"doi\":\"10.1016/j.na.2025.113948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give a partial negative answer to a question left open in a previous work by Brasco and the first and third-named authors concerning the sharp constant in the fractional Hardy inequality on convex sets. Our approach has a geometrical flavor and equivalently reformulates the sharp constant in the limit case <span><math><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></math></span> as the Cheeger constant for the fractional perimeter and the Lebesgue measure with a suitable weight. As a by-product, we obtain new lower bounds on the sharp constant in the 1-dimensional case, even for non-convex sets, some of which optimal in the case <span><math><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"263 \",\"pages\":\"Article 113948\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25002007\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002007","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对Brasco等人关于凸集上分数阶Hardy不等式尖锐常数的问题给出了部分否定的回答。我们的方法具有几何风味,并等效地将极限情况下p=1的锐常数重新表述为分数周长的Cheeger常数和具有适当权重的勒贝格测度。作为一个副产品,我们得到了一维情况下尖锐常数的新下界,即使对于非凸集也是如此,其中一些在p=1的情况下是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geometrical approach to the sharp Hardy inequality in Sobolev–Slobodeckiĭ spaces
We give a partial negative answer to a question left open in a previous work by Brasco and the first and third-named authors concerning the sharp constant in the fractional Hardy inequality on convex sets. Our approach has a geometrical flavor and equivalently reformulates the sharp constant in the limit case p=1 as the Cheeger constant for the fractional perimeter and the Lebesgue measure with a suitable weight. As a by-product, we obtain new lower bounds on the sharp constant in the 1-dimensional case, even for non-convex sets, some of which optimal in the case p=1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信