peo基聚合物电解质作为Na-β″-Al2O3/Na3V2(PO4)3正极中间体的优化

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Yoshihiko Inoue, , , Schanth Hacatrjan, , , Shota Tsujimoto, , , Ryo Sakamoto, , , Changhee Lee, , , Yuto Miyahara, , , Takeshi Abe, , and , Kohei Miyazaki*, 
{"title":"peo基聚合物电解质作为Na-β″-Al2O3/Na3V2(PO4)3正极中间体的优化","authors":"Yoshihiko Inoue,&nbsp;, ,&nbsp;Schanth Hacatrjan,&nbsp;, ,&nbsp;Shota Tsujimoto,&nbsp;, ,&nbsp;Ryo Sakamoto,&nbsp;, ,&nbsp;Changhee Lee,&nbsp;, ,&nbsp;Yuto Miyahara,&nbsp;, ,&nbsp;Takeshi Abe,&nbsp;, and ,&nbsp;Kohei Miyazaki*,&nbsp;","doi":"10.1021/acs.jpcc.5c05164","DOIUrl":null,"url":null,"abstract":"<p >This study explores the influence of sodium bis(fluorosulfonyl)amide (NaFSA) concentration and the incorporation of the anion acceptor, 2,4,6-triphenylboroxin (TPB), on the performance of poly(ethylene oxide) (PEO)-based polymer electrolytes for solid-state sodium batteries. Raman spectroscopy confirmed that NaFSA remains partially dissociated in the polymer matrix, independent of the salt concentration. Electrochemical impedance spectroscopy and temperature-dependent conductivity analyses revealed that ionic conductivity is governed by both salt concentration and polymer phase transitions, particularly around 50 °C. Optimal performance was achieved at a NaFSA ratio of 1/30, which provided a favorable balance between ion availability and minimized anion-induced polarization. The addition of TPB significantly enhanced sodium-ion transference numbers and high-rate charge–discharge capabilities, especially at lower salt concentrations, by effectively trapping anions and reducing both bulk and interfacial resistances. These results underscore the importance of tailoring the salt concentration and incorporating functional additives to optimize ion transport in polymer electrolytes, offering a promising approach for advancing solid-state sodium battery technologies.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 40","pages":"17966–17974"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of PEO-Based Polymer Electrolytes as an Intermediate for the Na-β″-Al2O3/Na3V2(PO4)3 Positive Electrode\",\"authors\":\"Yoshihiko Inoue,&nbsp;, ,&nbsp;Schanth Hacatrjan,&nbsp;, ,&nbsp;Shota Tsujimoto,&nbsp;, ,&nbsp;Ryo Sakamoto,&nbsp;, ,&nbsp;Changhee Lee,&nbsp;, ,&nbsp;Yuto Miyahara,&nbsp;, ,&nbsp;Takeshi Abe,&nbsp;, and ,&nbsp;Kohei Miyazaki*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c05164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study explores the influence of sodium bis(fluorosulfonyl)amide (NaFSA) concentration and the incorporation of the anion acceptor, 2,4,6-triphenylboroxin (TPB), on the performance of poly(ethylene oxide) (PEO)-based polymer electrolytes for solid-state sodium batteries. Raman spectroscopy confirmed that NaFSA remains partially dissociated in the polymer matrix, independent of the salt concentration. Electrochemical impedance spectroscopy and temperature-dependent conductivity analyses revealed that ionic conductivity is governed by both salt concentration and polymer phase transitions, particularly around 50 °C. Optimal performance was achieved at a NaFSA ratio of 1/30, which provided a favorable balance between ion availability and minimized anion-induced polarization. The addition of TPB significantly enhanced sodium-ion transference numbers and high-rate charge–discharge capabilities, especially at lower salt concentrations, by effectively trapping anions and reducing both bulk and interfacial resistances. These results underscore the importance of tailoring the salt concentration and incorporating functional additives to optimize ion transport in polymer electrolytes, offering a promising approach for advancing solid-state sodium battery technologies.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 40\",\"pages\":\"17966–17974\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c05164\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c05164","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了双(氟磺酰基)酰胺钠(NaFSA)浓度和阴离子受体2,4,6-三苯硼氧(TPB)的掺入对固态钠电池用聚环氧乙烷(PEO)基聚合物电解质性能的影响。拉曼光谱证实NaFSA在聚合物基质中保持部分解离,与盐浓度无关。电化学阻抗谱和温度相关的电导率分析表明,离子电导率受盐浓度和聚合物相变的控制,特别是在50°C左右。在NaFSA比为1/30时,获得了最佳性能,这在离子可用性和最小化阴离子诱导极化之间取得了良好的平衡。TPB的加入通过有效捕获阴离子并降低体积和界面阻力,显著提高了钠离子转移数量和高倍率充放电能力,特别是在低盐浓度下。这些结果强调了调整盐浓度和加入功能添加剂以优化聚合物电解质传输的重要性,为推进固态钠电池技术提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization of PEO-Based Polymer Electrolytes as an Intermediate for the Na-β″-Al2O3/Na3V2(PO4)3 Positive Electrode

Optimization of PEO-Based Polymer Electrolytes as an Intermediate for the Na-β″-Al2O3/Na3V2(PO4)3 Positive Electrode

Optimization of PEO-Based Polymer Electrolytes as an Intermediate for the Na-β″-Al2O3/Na3V2(PO4)3 Positive Electrode

This study explores the influence of sodium bis(fluorosulfonyl)amide (NaFSA) concentration and the incorporation of the anion acceptor, 2,4,6-triphenylboroxin (TPB), on the performance of poly(ethylene oxide) (PEO)-based polymer electrolytes for solid-state sodium batteries. Raman spectroscopy confirmed that NaFSA remains partially dissociated in the polymer matrix, independent of the salt concentration. Electrochemical impedance spectroscopy and temperature-dependent conductivity analyses revealed that ionic conductivity is governed by both salt concentration and polymer phase transitions, particularly around 50 °C. Optimal performance was achieved at a NaFSA ratio of 1/30, which provided a favorable balance between ion availability and minimized anion-induced polarization. The addition of TPB significantly enhanced sodium-ion transference numbers and high-rate charge–discharge capabilities, especially at lower salt concentrations, by effectively trapping anions and reducing both bulk and interfacial resistances. These results underscore the importance of tailoring the salt concentration and incorporating functional additives to optimize ion transport in polymer electrolytes, offering a promising approach for advancing solid-state sodium battery technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信