多源遥感数据分类的多模态四元数表示网络。

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yu-Le Wei,Heng-Chao Li,Jian-Li Wang,Yu-Bang Zheng,Jie Pan,Qian Du
{"title":"多源遥感数据分类的多模态四元数表示网络。","authors":"Yu-Le Wei,Heng-Chao Li,Jian-Li Wang,Yu-Bang Zheng,Jie Pan,Qian Du","doi":"10.1109/tnnls.2025.3610892","DOIUrl":null,"url":null,"abstract":"The effective integration and classification of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data is of great significance in Earth observation missions, which are confronted with challenges such as insufficient information utilization and feature heterogeneity. This article proposes a multimodal quaternion representation network (MMQRN) for multisource remote sensing (RS) data classification. Specifically, we first propose the multimodal quaternion representation (MMQR), which employs the orthogonal imaginary components of quaternions to model the complex nonlinear interactions among complementary features, thereby enabling their comprehensive fusion and utilization. Subsequently, we design a multimodal feature cross-fusion (MFCF) framework to integrate multisource, multimodal, and multilevel features adequately. Finally, we leverage the ability to capture long-term dependencies of transformers to design a quaternion convolutional transformer network (QCTN) for modeling global and local spatial-spectral information, respectively. Experiments conducted on three multisource RS datasets demonstrate the superior performance of the proposed MMQRN relative to other state-of-the-art classification methods.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"17 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Quaternion Representation Network for Multisource Remote Sensing Data Classification.\",\"authors\":\"Yu-Le Wei,Heng-Chao Li,Jian-Li Wang,Yu-Bang Zheng,Jie Pan,Qian Du\",\"doi\":\"10.1109/tnnls.2025.3610892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective integration and classification of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data is of great significance in Earth observation missions, which are confronted with challenges such as insufficient information utilization and feature heterogeneity. This article proposes a multimodal quaternion representation network (MMQRN) for multisource remote sensing (RS) data classification. Specifically, we first propose the multimodal quaternion representation (MMQR), which employs the orthogonal imaginary components of quaternions to model the complex nonlinear interactions among complementary features, thereby enabling their comprehensive fusion and utilization. Subsequently, we design a multimodal feature cross-fusion (MFCF) framework to integrate multisource, multimodal, and multilevel features adequately. Finally, we leverage the ability to capture long-term dependencies of transformers to design a quaternion convolutional transformer network (QCTN) for modeling global and local spatial-spectral information, respectively. Experiments conducted on three multisource RS datasets demonstrate the superior performance of the proposed MMQRN relative to other state-of-the-art classification methods.\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tnnls.2025.3610892\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tnnls.2025.3610892","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像和光探测与测距数据的有效整合与分类对地观测任务具有重要意义,目前对地观测任务面临着信息利用不足、特征异构等挑战。提出了一种用于多源遥感数据分类的多模态四元数表示网络(MMQRN)。具体而言,我们首先提出了多模态四元数表示(MMQR),该方法利用四元数的正交虚分量来模拟互补特征之间复杂的非线性相互作用,从而实现它们的综合融合和利用。随后,我们设计了一个多模态特征交叉融合(MFCF)框架,以充分集成多源、多模态和多层次特征。最后,我们利用捕获变压器的长期依赖关系的能力,设计了一个四元数卷积变压器网络(QCTN),分别用于建模全局和局部空间光谱信息。在三个多源RS数据集上进行的实验表明,相对于其他最先进的分类方法,所提出的MMQRN具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Quaternion Representation Network for Multisource Remote Sensing Data Classification.
The effective integration and classification of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data is of great significance in Earth observation missions, which are confronted with challenges such as insufficient information utilization and feature heterogeneity. This article proposes a multimodal quaternion representation network (MMQRN) for multisource remote sensing (RS) data classification. Specifically, we first propose the multimodal quaternion representation (MMQR), which employs the orthogonal imaginary components of quaternions to model the complex nonlinear interactions among complementary features, thereby enabling their comprehensive fusion and utilization. Subsequently, we design a multimodal feature cross-fusion (MFCF) framework to integrate multisource, multimodal, and multilevel features adequately. Finally, we leverage the ability to capture long-term dependencies of transformers to design a quaternion convolutional transformer network (QCTN) for modeling global and local spatial-spectral information, respectively. Experiments conducted on three multisource RS datasets demonstrate the superior performance of the proposed MMQRN relative to other state-of-the-art classification methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信