M. Ballardini, A. Gruppuso, S. Paradiso, S.S. Sirletti and P. Natoli
{"title":"普朗克对各向同性宇宙双折射尺度依赖性的约束","authors":"M. Ballardini, A. Gruppuso, S. Paradiso, S.S. Sirletti and P. Natoli","doi":"10.1088/1475-7516/2025/09/075","DOIUrl":null,"url":null,"abstract":"The rotation of the linear polarisation plane of photons during propagation, also known as cosmic birefringence, is a powerful probe of parity-violating extensions of standard electromagnetism. Using Planck legacy data, we confirm previous estimates of the isotropic birefringence angle, finding β ≃ 0.30±0.05 [deg] at 68% CL, not including the systematic error from the instrumental polarisation angle. If this is a genuine signal, it could be explained by theories of Chern-Simons-type coupled to electromagnetism, which could lead to a harmonic scale-dependent birefringence signal, if the hypothesis of an ultra-light (pseudo) scalar field does not hold. To investigate these models, we pursue two complementary approaches: first, we fit the birefringence angle estimated at different multipoles, βℓ, with a power-law model and second, we perform a non-parametric Bayesian reconstruction of it. Both methods yield results consistent with a non-vanishing constant birefringence angle. The first method shows no significant dependence on the harmonic scale (up to 1.8σ CL), while the second method demonstrates that a constant model is favored by Bayesian evidence. This conclusion is robust across all four published Planck CMB solutions. Finally, we forecast that upcoming CMB observations by Simons Observatory, LiteBIRD and a wishful CMB-Stage 4 experiment could reduce current uncertainties by a factor of approximately 7.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"3 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planck constraints on the scale dependence of isotropic cosmic birefringence\",\"authors\":\"M. Ballardini, A. Gruppuso, S. Paradiso, S.S. Sirletti and P. Natoli\",\"doi\":\"10.1088/1475-7516/2025/09/075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rotation of the linear polarisation plane of photons during propagation, also known as cosmic birefringence, is a powerful probe of parity-violating extensions of standard electromagnetism. Using Planck legacy data, we confirm previous estimates of the isotropic birefringence angle, finding β ≃ 0.30±0.05 [deg] at 68% CL, not including the systematic error from the instrumental polarisation angle. If this is a genuine signal, it could be explained by theories of Chern-Simons-type coupled to electromagnetism, which could lead to a harmonic scale-dependent birefringence signal, if the hypothesis of an ultra-light (pseudo) scalar field does not hold. To investigate these models, we pursue two complementary approaches: first, we fit the birefringence angle estimated at different multipoles, βℓ, with a power-law model and second, we perform a non-parametric Bayesian reconstruction of it. Both methods yield results consistent with a non-vanishing constant birefringence angle. The first method shows no significant dependence on the harmonic scale (up to 1.8σ CL), while the second method demonstrates that a constant model is favored by Bayesian evidence. This conclusion is robust across all four published Planck CMB solutions. Finally, we forecast that upcoming CMB observations by Simons Observatory, LiteBIRD and a wishful CMB-Stage 4 experiment could reduce current uncertainties by a factor of approximately 7.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/09/075\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/09/075","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Planck constraints on the scale dependence of isotropic cosmic birefringence
The rotation of the linear polarisation plane of photons during propagation, also known as cosmic birefringence, is a powerful probe of parity-violating extensions of standard electromagnetism. Using Planck legacy data, we confirm previous estimates of the isotropic birefringence angle, finding β ≃ 0.30±0.05 [deg] at 68% CL, not including the systematic error from the instrumental polarisation angle. If this is a genuine signal, it could be explained by theories of Chern-Simons-type coupled to electromagnetism, which could lead to a harmonic scale-dependent birefringence signal, if the hypothesis of an ultra-light (pseudo) scalar field does not hold. To investigate these models, we pursue two complementary approaches: first, we fit the birefringence angle estimated at different multipoles, βℓ, with a power-law model and second, we perform a non-parametric Bayesian reconstruction of it. Both methods yield results consistent with a non-vanishing constant birefringence angle. The first method shows no significant dependence on the harmonic scale (up to 1.8σ CL), while the second method demonstrates that a constant model is favored by Bayesian evidence. This conclusion is robust across all four published Planck CMB solutions. Finally, we forecast that upcoming CMB observations by Simons Observatory, LiteBIRD and a wishful CMB-Stage 4 experiment could reduce current uncertainties by a factor of approximately 7.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.