Jacqueline I Bereska, Selina Palic, Leonard F Bereska, Efstratios Gavves, C Yung Nio, Marnix P M Kop, Femke Struik, Freek Daams, Martijn A van Dam, Tom Dijkhuis, Marc G Besselink, Henk A Marquering, Jaap Stoker, Inez M Verpalen
{"title":"改进课堂:自我监督的教授模型用于局部晚期胰腺导管腺癌的改进分割。","authors":"Jacqueline I Bereska, Selina Palic, Leonard F Bereska, Efstratios Gavves, C Yung Nio, Marnix P M Kop, Femke Struik, Freek Daams, Martijn A van Dam, Tom Dijkhuis, Marc G Besselink, Henk A Marquering, Jaap Stoker, Inez M Verpalen","doi":"10.1007/s10278-025-01555-x","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths, with accurate staging being critical for treatment planning. Automated 3D segmentation models can aid in staging, but segmenting PDAC, especially in cases of locally advanced pancreatic cancer (LAPC), is challenging due to the tumor's heterogeneous appearance, irregular shapes, and extensive infiltration. This study developed and evaluated a tripartite self-supervised learning architecture for improved 3D segmentation of LAPC, addressing the challenges of heterogeneous appearance, irregular shapes, and extensive infiltration in PDAC. We implemented a tripartite architecture consisting of a teacher model, a professor model, and a student model. The teacher model, trained on manually segmented CT scans, generated initial pseudo-segmentations. The professor model refined these segmentations, which were then used to train the student model. We utilized 1115 CT scans from 903 patients for training. Three expert abdominal radiologists manually segmented 30 CT scans from 27 patients with LAPC, serving as reference standards. We evaluated the performance using DICE, Hausdorff distance (HD95), and mean surface distance (MSD). The teacher, professor, and student models achieved average DICE scores of 0.60, 0.73, and 0.75, respectively, with significant boundary accuracy improvements (teacher HD95/MSD, 25.71/5.96 mm; professor, 9.68/1.96 mm; student, 4.79/1.34 mm). Our findings demonstrate that the professor model significantly enhances segmentation accuracy for LAPC (p < 0.01). Both the professor and student models offer substantial improvements over previous work. The introduced tripartite self-supervised learning architecture shows promise for improving automated 3D segmentation of LAPC, potentially aiding in more accurate staging and treatment planning.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refining the Classroom: The Self-Supervised Professor Model for Improved Segmentation of Locally Advanced Pancreatic Ductal Adenocarcinoma.\",\"authors\":\"Jacqueline I Bereska, Selina Palic, Leonard F Bereska, Efstratios Gavves, C Yung Nio, Marnix P M Kop, Femke Struik, Freek Daams, Martijn A van Dam, Tom Dijkhuis, Marc G Besselink, Henk A Marquering, Jaap Stoker, Inez M Verpalen\",\"doi\":\"10.1007/s10278-025-01555-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths, with accurate staging being critical for treatment planning. Automated 3D segmentation models can aid in staging, but segmenting PDAC, especially in cases of locally advanced pancreatic cancer (LAPC), is challenging due to the tumor's heterogeneous appearance, irregular shapes, and extensive infiltration. This study developed and evaluated a tripartite self-supervised learning architecture for improved 3D segmentation of LAPC, addressing the challenges of heterogeneous appearance, irregular shapes, and extensive infiltration in PDAC. We implemented a tripartite architecture consisting of a teacher model, a professor model, and a student model. The teacher model, trained on manually segmented CT scans, generated initial pseudo-segmentations. The professor model refined these segmentations, which were then used to train the student model. We utilized 1115 CT scans from 903 patients for training. Three expert abdominal radiologists manually segmented 30 CT scans from 27 patients with LAPC, serving as reference standards. We evaluated the performance using DICE, Hausdorff distance (HD95), and mean surface distance (MSD). The teacher, professor, and student models achieved average DICE scores of 0.60, 0.73, and 0.75, respectively, with significant boundary accuracy improvements (teacher HD95/MSD, 25.71/5.96 mm; professor, 9.68/1.96 mm; student, 4.79/1.34 mm). Our findings demonstrate that the professor model significantly enhances segmentation accuracy for LAPC (p < 0.01). Both the professor and student models offer substantial improvements over previous work. The introduced tripartite self-supervised learning architecture shows promise for improving automated 3D segmentation of LAPC, potentially aiding in more accurate staging and treatment planning.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01555-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01555-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Refining the Classroom: The Self-Supervised Professor Model for Improved Segmentation of Locally Advanced Pancreatic Ductal Adenocarcinoma.
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths, with accurate staging being critical for treatment planning. Automated 3D segmentation models can aid in staging, but segmenting PDAC, especially in cases of locally advanced pancreatic cancer (LAPC), is challenging due to the tumor's heterogeneous appearance, irregular shapes, and extensive infiltration. This study developed and evaluated a tripartite self-supervised learning architecture for improved 3D segmentation of LAPC, addressing the challenges of heterogeneous appearance, irregular shapes, and extensive infiltration in PDAC. We implemented a tripartite architecture consisting of a teacher model, a professor model, and a student model. The teacher model, trained on manually segmented CT scans, generated initial pseudo-segmentations. The professor model refined these segmentations, which were then used to train the student model. We utilized 1115 CT scans from 903 patients for training. Three expert abdominal radiologists manually segmented 30 CT scans from 27 patients with LAPC, serving as reference standards. We evaluated the performance using DICE, Hausdorff distance (HD95), and mean surface distance (MSD). The teacher, professor, and student models achieved average DICE scores of 0.60, 0.73, and 0.75, respectively, with significant boundary accuracy improvements (teacher HD95/MSD, 25.71/5.96 mm; professor, 9.68/1.96 mm; student, 4.79/1.34 mm). Our findings demonstrate that the professor model significantly enhances segmentation accuracy for LAPC (p < 0.01). Both the professor and student models offer substantial improvements over previous work. The introduced tripartite self-supervised learning architecture shows promise for improving automated 3D segmentation of LAPC, potentially aiding in more accurate staging and treatment planning.