PASSpedia:在单细胞分辨率下跨不同物种的聚腺苷化位点数据库。

IF 7.9
Pei-Hong Zhang, Hua Feng, Xu-Kai Ma, Fang Nan, Li Yang
{"title":"PASSpedia:在单细胞分辨率下跨不同物种的聚腺苷化位点数据库。","authors":"Pei-Hong Zhang, Hua Feng, Xu-Kai Ma, Fang Nan, Li Yang","doi":"10.1093/gpbjnl/qzaf089","DOIUrl":null,"url":null,"abstract":"<p><p>Polyadenylation site (PAS) selection plays important roles in gene expression regulation and function. RNA-seq data derived from 3' tag sequencing contain intrinsic information about PAS usage and have been analyzed for alternative polyadenylation (APA) isoform expression in both bulk and single cell samples. Here, we upgraded our previously developed deep learning-based PAS analysis pipeline SCAPTURE v2 to profile PASs from 1330 published 3' tag-based scRNA-seq datasets across seven species, resulting in a comprehensive PAS landscape across species. Validation with long-read sequencing data from matched human tissues showed high accuracy of single-cell PAS profiling by SCAPTURE, including previously unannotated ones. Further comparisons revealed distinct PAS usage preferences in different species, such as human versus mouse, independent of conservation of gene expression. Finally, we present PASSpedia, a comprehensive database for PAS analysis and comparison across seven species at single cell resolution, which is freely accessible online at https://bits.fudan.edu.cn/PASSpedia/.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PASSpedia: A Polyadenylation Site Database Across Different Species at Single Cell Resolution.\",\"authors\":\"Pei-Hong Zhang, Hua Feng, Xu-Kai Ma, Fang Nan, Li Yang\",\"doi\":\"10.1093/gpbjnl/qzaf089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyadenylation site (PAS) selection plays important roles in gene expression regulation and function. RNA-seq data derived from 3' tag sequencing contain intrinsic information about PAS usage and have been analyzed for alternative polyadenylation (APA) isoform expression in both bulk and single cell samples. Here, we upgraded our previously developed deep learning-based PAS analysis pipeline SCAPTURE v2 to profile PASs from 1330 published 3' tag-based scRNA-seq datasets across seven species, resulting in a comprehensive PAS landscape across species. Validation with long-read sequencing data from matched human tissues showed high accuracy of single-cell PAS profiling by SCAPTURE, including previously unannotated ones. Further comparisons revealed distinct PAS usage preferences in different species, such as human versus mouse, independent of conservation of gene expression. Finally, we present PASSpedia, a comprehensive database for PAS analysis and comparison across seven species at single cell resolution, which is freely accessible online at https://bits.fudan.edu.cn/PASSpedia/.</p>\",\"PeriodicalId\":94020,\"journal\":{\"name\":\"Genomics, proteomics & bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzaf089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚腺苷酸化位点(Polyadenylation site, PAS)选择在基因表达调控和功能中起着重要作用。来自3'标签测序的RNA-seq数据包含PAS使用的内在信息,并在散装和单细胞样品中分析了替代聚腺苷化(APA)异构体表达。在这里,我们升级了之前开发的基于深度学习的PAS分析管道SCAPTURE v2,从1330个已发表的基于3'标签的scRNA-seq数据集中分析了7个物种的PAS,从而获得了跨物种的全面PAS景观。来自匹配人体组织的长读测序数据验证表明,SCAPTURE的单细胞PAS分析具有很高的准确性,包括以前未注释的细胞。进一步的比较揭示了不同物种(如人类和小鼠)对PAS使用偏好的差异,这与基因表达的保守性无关。最后,我们介绍了PASSpedia,这是一个综合数据库,用于在单细胞分辨率下分析和比较七种物种的PAS,该数据库可在https://bits.fudan.edu.cn/PASSpedia/上免费访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PASSpedia: A Polyadenylation Site Database Across Different Species at Single Cell Resolution.

Polyadenylation site (PAS) selection plays important roles in gene expression regulation and function. RNA-seq data derived from 3' tag sequencing contain intrinsic information about PAS usage and have been analyzed for alternative polyadenylation (APA) isoform expression in both bulk and single cell samples. Here, we upgraded our previously developed deep learning-based PAS analysis pipeline SCAPTURE v2 to profile PASs from 1330 published 3' tag-based scRNA-seq datasets across seven species, resulting in a comprehensive PAS landscape across species. Validation with long-read sequencing data from matched human tissues showed high accuracy of single-cell PAS profiling by SCAPTURE, including previously unannotated ones. Further comparisons revealed distinct PAS usage preferences in different species, such as human versus mouse, independent of conservation of gene expression. Finally, we present PASSpedia, a comprehensive database for PAS analysis and comparison across seven species at single cell resolution, which is freely accessible online at https://bits.fudan.edu.cn/PASSpedia/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信