可解释的人工智能:道德框架、偏见和基准的必要性。

IF 1.4 3区 医学 Q2 PEDIATRICS
Rosa Verhoeven, Wiam Bouisaghouane, Jan Bf Hulscher
{"title":"可解释的人工智能:道德框架、偏见和基准的必要性。","authors":"Rosa Verhoeven, Wiam Bouisaghouane, Jan Bf Hulscher","doi":"10.1055/a-2702-1843","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is increasingly integrated into pediatric healthcare, offering opportunities to improve diagnostic accuracy and clinical decision-making. However, the complexity and opacity of many AI models raise concerns about trust, transparency, and safety, especially in vulnerable pediatric populations. Explainable AI (XAI) aims to make AI-driven decisions more interpretable and accountable. This review outlines the role of XAI in pediatric surgery, emphasizing challenges related to bias, the importance of ethical frameworks, and the need for standardized benchmarks. Addressing these aspects is essential to developing fair, safe, and effective AI applications for children. Finally, we provide recommendations for future research and implementation to guide the development of robust and ethically sound XAI solutions.</p>","PeriodicalId":56316,"journal":{"name":"European Journal of Pediatric Surgery","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable AI: Ethical Frameworks, Bias, and the Necessity for Benchmarks.\",\"authors\":\"Rosa Verhoeven, Wiam Bouisaghouane, Jan Bf Hulscher\",\"doi\":\"10.1055/a-2702-1843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) is increasingly integrated into pediatric healthcare, offering opportunities to improve diagnostic accuracy and clinical decision-making. However, the complexity and opacity of many AI models raise concerns about trust, transparency, and safety, especially in vulnerable pediatric populations. Explainable AI (XAI) aims to make AI-driven decisions more interpretable and accountable. This review outlines the role of XAI in pediatric surgery, emphasizing challenges related to bias, the importance of ethical frameworks, and the need for standardized benchmarks. Addressing these aspects is essential to developing fair, safe, and effective AI applications for children. Finally, we provide recommendations for future research and implementation to guide the development of robust and ethically sound XAI solutions.</p>\",\"PeriodicalId\":56316,\"journal\":{\"name\":\"European Journal of Pediatric Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pediatric Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2702-1843\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pediatric Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2702-1843","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)越来越多地融入儿科医疗保健,为提高诊断准确性和临床决策提供了机会。然而,许多人工智能模型的复杂性和不透明性引起了人们对信任、透明度和安全性的担忧,特别是在弱势儿科人群中。可解释人工智能(XAI)旨在使人工智能驱动的决策更具可解释性和可问责性。这篇综述概述了XAI在儿科外科中的作用,强调了与偏倚相关的挑战、伦理框架的重要性以及标准化基准的必要性。解决这些问题对于为儿童开发公平、安全和有效的人工智能应用至关重要。最后,我们为未来的研究和实施提供了建议,以指导开发健壮且合乎道德的XAI解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable AI: Ethical Frameworks, Bias, and the Necessity for Benchmarks.

Artificial intelligence (AI) is increasingly integrated into pediatric healthcare, offering opportunities to improve diagnostic accuracy and clinical decision-making. However, the complexity and opacity of many AI models raise concerns about trust, transparency, and safety, especially in vulnerable pediatric populations. Explainable AI (XAI) aims to make AI-driven decisions more interpretable and accountable. This review outlines the role of XAI in pediatric surgery, emphasizing challenges related to bias, the importance of ethical frameworks, and the need for standardized benchmarks. Addressing these aspects is essential to developing fair, safe, and effective AI applications for children. Finally, we provide recommendations for future research and implementation to guide the development of robust and ethically sound XAI solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
5.60%
发文量
66
审稿时长
6-12 weeks
期刊介绍: This broad-based international journal updates you on vital developments in pediatric surgery through original articles, abstracts of the literature, and meeting announcements. You will find state-of-the-art information on: abdominal and thoracic surgery neurosurgery urology gynecology oncology orthopaedics traumatology anesthesiology child pathology embryology morphology Written by surgeons, physicians, anesthesiologists, radiologists, and others involved in the surgical care of neonates, infants, and children, the EJPS is an indispensable resource for all specialists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信