FISH-FACS蛋白质组学:从低细胞数量的未培养环境微生物中增强无标记定量蛋白质组学分析。

IF 6.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-08-23 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf145
Vaikhari Kale, Ga Yan Grace Ho, Sandra Maaß, Anke Trautwein-Schult, Daniel Bartosik, Thomas Schweder, Bernhard M Fuchs, Dörte Becher
{"title":"FISH-FACS蛋白质组学:从低细胞数量的未培养环境微生物中增强无标记定量蛋白质组学分析。","authors":"Vaikhari Kale, Ga Yan Grace Ho, Sandra Maaß, Anke Trautwein-Schult, Daniel Bartosik, Thomas Schweder, Bernhard M Fuchs, Dörte Becher","doi":"10.1093/ismeco/ycaf145","DOIUrl":null,"url":null,"abstract":"<p><p>Metaproteomics is an essential approach to analyze the <i>in situ</i> metabolic activity of microbes across various environments. In such highly diverse environmental samples, the functionality of specific microorganisms of importance often remains underexplored due to the protein inference problem arising from sequence similarities between organisms. One approach to overcome this challenge is the enrichment of uncultured target organisms. However, this often results in samples with low protein content. In this study, we have developed a workflow that combines fluorescence <i>in situ</i> hybridization (FISH) and fluorescence-activated cell sorting (FACS) with mass spectrometry-based proteomics to analyze proteins from uncultured bacteria directly from environmental samples. We demonstrate that 1 × 10<sup>5</sup> bacterial cells are sufficient for reliable qualitative protein identifications, while 5 × 10<sup>5</sup> to 1 × 10<sup>6</sup> cells allow for both reproducible protein identification and quantification after FISH and FACS. In addition, the use of a clade-specific database enhances data analysis by improving peptide mapping, especially when compared to metaproteomics results.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf145"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452284/pdf/","citationCount":"0","resultStr":"{\"title\":\"FISH-FACS proteomics: enhanced label-free quantitative proteome analysis from low cell numbers of uncultured environmental microorganisms.\",\"authors\":\"Vaikhari Kale, Ga Yan Grace Ho, Sandra Maaß, Anke Trautwein-Schult, Daniel Bartosik, Thomas Schweder, Bernhard M Fuchs, Dörte Becher\",\"doi\":\"10.1093/ismeco/ycaf145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metaproteomics is an essential approach to analyze the <i>in situ</i> metabolic activity of microbes across various environments. In such highly diverse environmental samples, the functionality of specific microorganisms of importance often remains underexplored due to the protein inference problem arising from sequence similarities between organisms. One approach to overcome this challenge is the enrichment of uncultured target organisms. However, this often results in samples with low protein content. In this study, we have developed a workflow that combines fluorescence <i>in situ</i> hybridization (FISH) and fluorescence-activated cell sorting (FACS) with mass spectrometry-based proteomics to analyze proteins from uncultured bacteria directly from environmental samples. We demonstrate that 1 × 10<sup>5</sup> bacterial cells are sufficient for reliable qualitative protein identifications, while 5 × 10<sup>5</sup> to 1 × 10<sup>6</sup> cells allow for both reproducible protein identification and quantification after FISH and FACS. In addition, the use of a clade-specific database enhances data analysis by improving peptide mapping, especially when compared to metaproteomics results.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"5 1\",\"pages\":\"ycaf145\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452284/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycaf145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

宏蛋白质组学是分析不同环境下微生物原位代谢活性的重要方法。在如此高度多样化的环境样本中,由于生物体之间序列相似性引起的蛋白质推断问题,特定重要微生物的功能往往仍未得到充分探索。克服这一挑战的一种方法是富集未培养的目标生物。然而,这通常会导致样品中蛋白质含量低。在这项研究中,我们开发了一种工作流程,将荧光原位杂交(FISH)和荧光活化细胞分选(FACS)与基于质谱的蛋白质组学相结合,直接从环境样品中分析未培养细菌的蛋白质。我们证明,1 × 105个细菌细胞足以进行可靠的蛋白质定性鉴定,而5 × 105至1 × 106个细胞允许在FISH和FACS后进行可重复的蛋白质鉴定和定量。此外,使用分支特异性数据库通过改进肽图谱来增强数据分析,特别是与宏蛋白质组学结果相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FISH-FACS proteomics: enhanced label-free quantitative proteome analysis from low cell numbers of uncultured environmental microorganisms.

Metaproteomics is an essential approach to analyze the in situ metabolic activity of microbes across various environments. In such highly diverse environmental samples, the functionality of specific microorganisms of importance often remains underexplored due to the protein inference problem arising from sequence similarities between organisms. One approach to overcome this challenge is the enrichment of uncultured target organisms. However, this often results in samples with low protein content. In this study, we have developed a workflow that combines fluorescence in situ hybridization (FISH) and fluorescence-activated cell sorting (FACS) with mass spectrometry-based proteomics to analyze proteins from uncultured bacteria directly from environmental samples. We demonstrate that 1 × 105 bacterial cells are sufficient for reliable qualitative protein identifications, while 5 × 105 to 1 × 106 cells allow for both reproducible protein identification and quantification after FISH and FACS. In addition, the use of a clade-specific database enhances data analysis by improving peptide mapping, especially when compared to metaproteomics results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信