基于突变邻域机器学习的SARS-CoV-2变异特性结构预测

IF 3.9 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-09-08 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1634111
Max van den Boom, Erik Schultes, Thomas Hankemeier
{"title":"基于突变邻域机器学习的SARS-CoV-2变异特性结构预测","authors":"Max van den Boom, Erik Schultes, Thomas Hankemeier","doi":"10.3389/fbinf.2025.1634111","DOIUrl":null,"url":null,"abstract":"<p><p>This dataset presents a structure-enriched resource of theoretical and empirical SARS-CoV-2 spike receptor-binding domain (RBD) variants, developed under the STAYAHEAD project for pandemic preparedness. It integrates large-scale <i>in silico</i> structure predictions with empirical biophysical measurements. The dataset includes 3,705 single-point Wuhan-Hu-1 RBD variants and 100 higher-order Omicron BA.1/BA.2 variants, annotated with AlphaFold2 and ESMFold metrics and Bio2Byte sequence-based predictors. Structural descriptors-RMSD, TM-score, plDDT, solvent accessibility, hydrophobicity, aggregation propensity-are linked to ACE2 binding and expression data from deep mutational scanning. Provided as a FAIR<sup>2</sup> Data Package, it supports structure-function analysis, variant modeling, and responsible reuse in virology, structural biology, and computational protein science. This collaboration was co-funded by the PPP Allowance from Health ∼ Holland, Top Sector Life Sciences and Health, to stimulate public-private partnerships.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1634111"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452091/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structure-based prediction of SARS-CoV-2 variant properties using machine learning on mutational neighborhoods.\",\"authors\":\"Max van den Boom, Erik Schultes, Thomas Hankemeier\",\"doi\":\"10.3389/fbinf.2025.1634111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This dataset presents a structure-enriched resource of theoretical and empirical SARS-CoV-2 spike receptor-binding domain (RBD) variants, developed under the STAYAHEAD project for pandemic preparedness. It integrates large-scale <i>in silico</i> structure predictions with empirical biophysical measurements. The dataset includes 3,705 single-point Wuhan-Hu-1 RBD variants and 100 higher-order Omicron BA.1/BA.2 variants, annotated with AlphaFold2 and ESMFold metrics and Bio2Byte sequence-based predictors. Structural descriptors-RMSD, TM-score, plDDT, solvent accessibility, hydrophobicity, aggregation propensity-are linked to ACE2 binding and expression data from deep mutational scanning. Provided as a FAIR<sup>2</sup> Data Package, it supports structure-function analysis, variant modeling, and responsible reuse in virology, structural biology, and computational protein science. This collaboration was co-funded by the PPP Allowance from Health ∼ Holland, Top Sector Life Sciences and Health, to stimulate public-private partnerships.</p>\",\"PeriodicalId\":73066,\"journal\":{\"name\":\"Frontiers in bioinformatics\",\"volume\":\"5 \",\"pages\":\"1634111\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbinf.2025.1634111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1634111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

该数据集提供了一个结构丰富的理论和经验SARS-CoV-2刺突受体结合域(RBD)变体资源,这些变体是在STAYAHEAD项目下开发的,用于大流行防范。它集成了大规模的硅结构预测与经验生物物理测量。该数据集包括3705个单点武汉-湖-1 RBD变体和100个高阶Omicron BA.1/BA。2个变体,用AlphaFold2和ESMFold指标以及基于Bio2Byte序列的预测因子进行注释。结构描述符- rmsd, TM-score, plDDT,溶剂可及性,疏水性,聚集倾向-与ACE2结合和深度突变扫描的表达数据相关联。作为FAIR2数据包提供,它支持病毒学、结构生物学和计算蛋白质科学中的结构-功能分析、变异建模和负责任的重用。这项合作由荷兰卫生部、顶级部门生命科学和卫生的PPP津贴共同资助,以促进公私伙伴关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structure-based prediction of SARS-CoV-2 variant properties using machine learning on mutational neighborhoods.

Structure-based prediction of SARS-CoV-2 variant properties using machine learning on mutational neighborhoods.

Structure-based prediction of SARS-CoV-2 variant properties using machine learning on mutational neighborhoods.

Structure-based prediction of SARS-CoV-2 variant properties using machine learning on mutational neighborhoods.

This dataset presents a structure-enriched resource of theoretical and empirical SARS-CoV-2 spike receptor-binding domain (RBD) variants, developed under the STAYAHEAD project for pandemic preparedness. It integrates large-scale in silico structure predictions with empirical biophysical measurements. The dataset includes 3,705 single-point Wuhan-Hu-1 RBD variants and 100 higher-order Omicron BA.1/BA.2 variants, annotated with AlphaFold2 and ESMFold metrics and Bio2Byte sequence-based predictors. Structural descriptors-RMSD, TM-score, plDDT, solvent accessibility, hydrophobicity, aggregation propensity-are linked to ACE2 binding and expression data from deep mutational scanning. Provided as a FAIR2 Data Package, it supports structure-function analysis, variant modeling, and responsible reuse in virology, structural biology, and computational protein science. This collaboration was co-funded by the PPP Allowance from Health ∼ Holland, Top Sector Life Sciences and Health, to stimulate public-private partnerships.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信