{"title":"基于自适应学习算法和多模态行为建模的智能教育系统。","authors":"Yuwei Li, Botao Lu","doi":"10.7717/peerj-cs.3157","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of artificial intelligence, the demand for personalized and adaptive learning has driven the development of intelligent educational systems. This article proposes a novel adaptive learning-driven architecture that combines multimodal behavioral modeling and personalized educational resource recommendation. Specifically, we introduce a multimodal fusion (MMF) algorithm to extract and integrate heterogeneous learning behavior data-including text, images, and interaction logs-<i>via</i> stacked denoising autoencoders and Restricted Boltzmann Machines. We further design an adaptive learning (AL) module that constructs a student-resource interaction graph and dynamically recommends learning materials using a graph-enhanced contrastive learning strategy and a dual-MLP-based enhancement mechanism. Extensive experiments on the Students' Academic Performance Dataset demonstrate that our method significantly reduces prediction error (mean absolute error (MAE) = 0.01, mean squared error (MSE) = 0.0053) and achieves high precision (95.3%) and recall (96.7%). Ablation studies and benchmark comparisons validate the effectiveness and generalization ability of both MMF and AL. The system exhibits strong scalability, real-time responsiveness, and high user satisfaction, offering a robust technical foundation for next-generation AI-powered educational platforms.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3157"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453766/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intelligent educational systems based on adaptive learning algorithms and multimodal behavior modeling.\",\"authors\":\"Yuwei Li, Botao Lu\",\"doi\":\"10.7717/peerj-cs.3157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid advancement of artificial intelligence, the demand for personalized and adaptive learning has driven the development of intelligent educational systems. This article proposes a novel adaptive learning-driven architecture that combines multimodal behavioral modeling and personalized educational resource recommendation. Specifically, we introduce a multimodal fusion (MMF) algorithm to extract and integrate heterogeneous learning behavior data-including text, images, and interaction logs-<i>via</i> stacked denoising autoencoders and Restricted Boltzmann Machines. We further design an adaptive learning (AL) module that constructs a student-resource interaction graph and dynamically recommends learning materials using a graph-enhanced contrastive learning strategy and a dual-MLP-based enhancement mechanism. Extensive experiments on the Students' Academic Performance Dataset demonstrate that our method significantly reduces prediction error (mean absolute error (MAE) = 0.01, mean squared error (MSE) = 0.0053) and achieves high precision (95.3%) and recall (96.7%). Ablation studies and benchmark comparisons validate the effectiveness and generalization ability of both MMF and AL. The system exhibits strong scalability, real-time responsiveness, and high user satisfaction, offering a robust technical foundation for next-generation AI-powered educational platforms.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e3157\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453766/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.3157\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3157","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Intelligent educational systems based on adaptive learning algorithms and multimodal behavior modeling.
With the rapid advancement of artificial intelligence, the demand for personalized and adaptive learning has driven the development of intelligent educational systems. This article proposes a novel adaptive learning-driven architecture that combines multimodal behavioral modeling and personalized educational resource recommendation. Specifically, we introduce a multimodal fusion (MMF) algorithm to extract and integrate heterogeneous learning behavior data-including text, images, and interaction logs-via stacked denoising autoencoders and Restricted Boltzmann Machines. We further design an adaptive learning (AL) module that constructs a student-resource interaction graph and dynamically recommends learning materials using a graph-enhanced contrastive learning strategy and a dual-MLP-based enhancement mechanism. Extensive experiments on the Students' Academic Performance Dataset demonstrate that our method significantly reduces prediction error (mean absolute error (MAE) = 0.01, mean squared error (MSE) = 0.0053) and achieves high precision (95.3%) and recall (96.7%). Ablation studies and benchmark comparisons validate the effectiveness and generalization ability of both MMF and AL. The system exhibits strong scalability, real-time responsiveness, and high user satisfaction, offering a robust technical foundation for next-generation AI-powered educational platforms.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.