{"title":"利用PSO-MLP对远程环境中的学生学习进行智能评估:一种多模式方法。","authors":"Jing Wang, Muhammad Asif","doi":"10.7717/peerj-cs.3121","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of artificial intelligence (AI) has catalyzed transformative changes in education, particularly in mobile and online learning environments. While existing deep learning models struggle to efficiently integrate the complexity of remote education data and optimize model performance, this article proposes an intelligent evaluation method for students' learning states based on multimodal data. First, the joint characteristics of the pre-class mental status survey information and the health big data of teachers and students in the online teaching process constitute input data. Then, the multilayer perceptron (MLP) is used to intelligently identify the students' status and classify their enthusiasm for the class. Finally, the particle swarm optimization (PSO) model is used to optimize the model and improve the overall recognition rate. Compared to traditional methods, the PSO-MLP model with combined multimodal data performs well, achieving an accuracy of 0.891. It provides an operational, technical solution for the education system, provides a new AI foundation for personalized teaching and student health management by accurately assessing students' learning status, and helps to improve the effectiveness and efficiency of remote education.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3121"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453797/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging PSO-MLP for intelligent assessment of student learning in remote environments: a multimodal approach.\",\"authors\":\"Jing Wang, Muhammad Asif\",\"doi\":\"10.7717/peerj-cs.3121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid advancement of artificial intelligence (AI) has catalyzed transformative changes in education, particularly in mobile and online learning environments. While existing deep learning models struggle to efficiently integrate the complexity of remote education data and optimize model performance, this article proposes an intelligent evaluation method for students' learning states based on multimodal data. First, the joint characteristics of the pre-class mental status survey information and the health big data of teachers and students in the online teaching process constitute input data. Then, the multilayer perceptron (MLP) is used to intelligently identify the students' status and classify their enthusiasm for the class. Finally, the particle swarm optimization (PSO) model is used to optimize the model and improve the overall recognition rate. Compared to traditional methods, the PSO-MLP model with combined multimodal data performs well, achieving an accuracy of 0.891. It provides an operational, technical solution for the education system, provides a new AI foundation for personalized teaching and student health management by accurately assessing students' learning status, and helps to improve the effectiveness and efficiency of remote education.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e3121\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453797/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.3121\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3121","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Leveraging PSO-MLP for intelligent assessment of student learning in remote environments: a multimodal approach.
The rapid advancement of artificial intelligence (AI) has catalyzed transformative changes in education, particularly in mobile and online learning environments. While existing deep learning models struggle to efficiently integrate the complexity of remote education data and optimize model performance, this article proposes an intelligent evaluation method for students' learning states based on multimodal data. First, the joint characteristics of the pre-class mental status survey information and the health big data of teachers and students in the online teaching process constitute input data. Then, the multilayer perceptron (MLP) is used to intelligently identify the students' status and classify their enthusiasm for the class. Finally, the particle swarm optimization (PSO) model is used to optimize the model and improve the overall recognition rate. Compared to traditional methods, the PSO-MLP model with combined multimodal data performs well, achieving an accuracy of 0.891. It provides an operational, technical solution for the education system, provides a new AI foundation for personalized teaching and student health management by accurately assessing students' learning status, and helps to improve the effectiveness and efficiency of remote education.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.