体育运动中球检测技术的综合综述。

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-08-12 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.3079
Cristiano Moreira, Lino Ferreira, Paulo Jorge Coelho
{"title":"体育运动中球检测技术的综合综述。","authors":"Cristiano Moreira, Lino Ferreira, Paulo Jorge Coelho","doi":"10.7717/peerj-cs.3079","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting balls in sports plays a pivotal role in enhancing game analysis, providing real-time data for spectators, and improving decision-making and strategic thinking for referees and coaches. This is a highly debated and researched topic, but most works focus on one sport. Effective generalization of a single method or algorithm to different sports is much harder to achieve. This article reviews methodologies and advancements in object detection tailored to ball detection across various sports. Traditional computer vision techniques and modern deep learning methods are visited, emphasizing their strengths, limitations, and adaptability to diverse game scenarios. The challenges of occlusion, dynamic backgrounds, varying ball sizes, and high-speed movements are identified and discussed. This review aims to consolidate existing knowledge, compare state-of-the-art detection models, highlight pivotal challenges and possible solutions, and propose future research directions. The article underscores the importance of optimizations for accurate and efficient ball detection, setting the foundation for next-generation sports analytics systems.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3079"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453710/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of ball detection techniques in sports.\",\"authors\":\"Cristiano Moreira, Lino Ferreira, Paulo Jorge Coelho\",\"doi\":\"10.7717/peerj-cs.3079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detecting balls in sports plays a pivotal role in enhancing game analysis, providing real-time data for spectators, and improving decision-making and strategic thinking for referees and coaches. This is a highly debated and researched topic, but most works focus on one sport. Effective generalization of a single method or algorithm to different sports is much harder to achieve. This article reviews methodologies and advancements in object detection tailored to ball detection across various sports. Traditional computer vision techniques and modern deep learning methods are visited, emphasizing their strengths, limitations, and adaptability to diverse game scenarios. The challenges of occlusion, dynamic backgrounds, varying ball sizes, and high-speed movements are identified and discussed. This review aims to consolidate existing knowledge, compare state-of-the-art detection models, highlight pivotal challenges and possible solutions, and propose future research directions. The article underscores the importance of optimizations for accurate and efficient ball detection, setting the foundation for next-generation sports analytics systems.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e3079\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.3079\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3079","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在体育运动中,检测球对于加强比赛分析、为观众提供实时数据、提高裁判员和教练员的决策和战略思维都具有举足轻重的作用。这是一个备受争议和研究的话题,但大多数作品都集中在一项运动上。将单一方法或算法有效地推广到不同的运动中是非常困难的。本文回顾了各种运动中针对球检测的目标检测方法和进展。访问了传统的计算机视觉技术和现代深度学习方法,强调了它们的优势,局限性以及对不同游戏场景的适应性。识别并讨论了遮挡、动态背景、不同球大小和高速运动的挑战。本文旨在整合现有知识,比较最新的检测模型,突出关键挑战和可能的解决方案,并提出未来的研究方向。文章强调了优化准确和高效的球检测的重要性,为下一代体育分析系统奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A comprehensive review of ball detection techniques in sports.

A comprehensive review of ball detection techniques in sports.

A comprehensive review of ball detection techniques in sports.

A comprehensive review of ball detection techniques in sports.

Detecting balls in sports plays a pivotal role in enhancing game analysis, providing real-time data for spectators, and improving decision-making and strategic thinking for referees and coaches. This is a highly debated and researched topic, but most works focus on one sport. Effective generalization of a single method or algorithm to different sports is much harder to achieve. This article reviews methodologies and advancements in object detection tailored to ball detection across various sports. Traditional computer vision techniques and modern deep learning methods are visited, emphasizing their strengths, limitations, and adaptability to diverse game scenarios. The challenges of occlusion, dynamic backgrounds, varying ball sizes, and high-speed movements are identified and discussed. This review aims to consolidate existing knowledge, compare state-of-the-art detection models, highlight pivotal challenges and possible solutions, and propose future research directions. The article underscores the importance of optimizations for accurate and efficient ball detection, setting the foundation for next-generation sports analytics systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信