跨语言的抄袭检测:阿拉伯语和英语-阿拉伯语长文件的综合研究。

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-08-25 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.3128
Ahmad Abdelaal, Abdallah Elsaadany, Abdelrhman Ahmed Medhat, Aysha Al Shamsi, Noha Gamal ElDin Saad Ali
{"title":"跨语言的抄袭检测:阿拉伯语和英语-阿拉伯语长文件的综合研究。","authors":"Ahmad Abdelaal, Abdallah Elsaadany, Abdelrhman Ahmed Medhat, Aysha Al Shamsi, Noha Gamal ElDin Saad Ali","doi":"10.7717/peerj-cs.3128","DOIUrl":null,"url":null,"abstract":"<p><p>Plagiarism detection in Arabic texts remains a significant challenge due to the complex morphological structure, rich linguistic diversity, and scarcity of high-quality labeled datasets. This study proposes a robust framework for Arabic plagiarism detection by integrating Siamese neural networks (SNN) with state-of-the-art transformer architectures, specifically AraT5 and Longformer. The system employs a hybrid workflow, combining transformer-based encoders and a classification objective to implicitly learn textual similarity. To address the inherent imbalance in Arabic plagiarism datasets, both weighted cross-entropy loss and Dice loss functions were utilized to optimize model training. Extensive experiments were conducted using the ExAraCorpusPAN2015 dataset, demonstrating the effectiveness of the proposed architecture. Results indicate that AraT5 with weighted cross-entropy loss outperformed other configurations, achieving an F1-score of 0.9058. Additionally, comparative analysis with existing methodologies highlights the superiority of our approach in handling nuanced semantic and structural variations within Arabic texts. This study underscores the importance of transformer-based architectures and class-specific loss functions in enhancing plagiarism detection accuracy in under-resourced languages like Arabic.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3128"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plagiarism detection across languages: a comprehensive study of Arabic and English-to-Arabic long documents.\",\"authors\":\"Ahmad Abdelaal, Abdallah Elsaadany, Abdelrhman Ahmed Medhat, Aysha Al Shamsi, Noha Gamal ElDin Saad Ali\",\"doi\":\"10.7717/peerj-cs.3128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plagiarism detection in Arabic texts remains a significant challenge due to the complex morphological structure, rich linguistic diversity, and scarcity of high-quality labeled datasets. This study proposes a robust framework for Arabic plagiarism detection by integrating Siamese neural networks (SNN) with state-of-the-art transformer architectures, specifically AraT5 and Longformer. The system employs a hybrid workflow, combining transformer-based encoders and a classification objective to implicitly learn textual similarity. To address the inherent imbalance in Arabic plagiarism datasets, both weighted cross-entropy loss and Dice loss functions were utilized to optimize model training. Extensive experiments were conducted using the ExAraCorpusPAN2015 dataset, demonstrating the effectiveness of the proposed architecture. Results indicate that AraT5 with weighted cross-entropy loss outperformed other configurations, achieving an F1-score of 0.9058. Additionally, comparative analysis with existing methodologies highlights the superiority of our approach in handling nuanced semantic and structural variations within Arabic texts. This study underscores the importance of transformer-based architectures and class-specific loss functions in enhancing plagiarism detection accuracy in under-resourced languages like Arabic.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e3128\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.3128\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3128","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于复杂的形态结构、丰富的语言多样性和缺乏高质量的标记数据集,阿拉伯语文本的抄袭检测仍然是一个重大挑战。本研究通过将Siamese神经网络(SNN)与最先进的变压器架构(特别是AraT5和Longformer)集成,提出了一个强大的阿拉伯语抄袭检测框架。该系统采用混合工作流程,结合基于变压器的编码器和分类目标来隐式学习文本相似度。为了解决阿拉伯语抄袭数据集固有的不平衡问题,利用加权交叉熵损失和Dice损失函数对模型训练进行优化。使用ExAraCorpusPAN2015数据集进行了大量实验,证明了所提出架构的有效性。结果表明,具有加权交叉熵损失的AraT5优于其他配置,其f1得分为0.9058。此外,与现有方法的比较分析突出了我们的方法在处理阿拉伯语文本中细微的语义和结构变化方面的优势。该研究强调了基于变压器的体系结构和类特定损失函数在提高资源不足语言(如阿拉伯语)的剽窃检测准确性方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plagiarism detection across languages: a comprehensive study of Arabic and English-to-Arabic long documents.

Plagiarism detection across languages: a comprehensive study of Arabic and English-to-Arabic long documents.

Plagiarism detection across languages: a comprehensive study of Arabic and English-to-Arabic long documents.

Plagiarism detection across languages: a comprehensive study of Arabic and English-to-Arabic long documents.

Plagiarism detection in Arabic texts remains a significant challenge due to the complex morphological structure, rich linguistic diversity, and scarcity of high-quality labeled datasets. This study proposes a robust framework for Arabic plagiarism detection by integrating Siamese neural networks (SNN) with state-of-the-art transformer architectures, specifically AraT5 and Longformer. The system employs a hybrid workflow, combining transformer-based encoders and a classification objective to implicitly learn textual similarity. To address the inherent imbalance in Arabic plagiarism datasets, both weighted cross-entropy loss and Dice loss functions were utilized to optimize model training. Extensive experiments were conducted using the ExAraCorpusPAN2015 dataset, demonstrating the effectiveness of the proposed architecture. Results indicate that AraT5 with weighted cross-entropy loss outperformed other configurations, achieving an F1-score of 0.9058. Additionally, comparative analysis with existing methodologies highlights the superiority of our approach in handling nuanced semantic and structural variations within Arabic texts. This study underscores the importance of transformer-based architectures and class-specific loss functions in enhancing plagiarism detection accuracy in under-resourced languages like Arabic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信