Abdulaziz Mohammed, Mingwei Zhang, Gehad Abdullah Amran, Husam M Alawadh, Ruizhe Wang, Amerah Alabrah, Ali A Al-Bakhrani
{"title":"会话式推荐系统的社会信息敏感模型。","authors":"Abdulaziz Mohammed, Mingwei Zhang, Gehad Abdullah Amran, Husam M Alawadh, Ruizhe Wang, Amerah Alabrah, Ali A Al-Bakhrani","doi":"10.7717/peerj-cs.3067","DOIUrl":null,"url":null,"abstract":"<p><p>Conversational recommender systems (CRS) facilitate natural language interactions for more effective item suggestions. While these systems show promise, they face challenges in effectively utilizing and integrating informative data with conversation history through semantic fusion. In this study we present an innovative framework for extracting social information from conversational datasets by inferring ratings and constructing user-item interaction and user-user relationship graphs. We introduce a social information sensitive semantic fusion (SISSF) method that employs contrastive learning (CL) to bridge the semantic gap between generated social information and conversation history. We evaluated the framework on two public datasets (ReDial and INSPIRED) using both automatic and human evaluation metrics. Our SISSF framework demonstrated significant improvements over baseline models across all metrics. For the ReDial dataset, SISSF achieved superior performance in recommendation tasks (R@1: 0.062, R@50: 0.437) and conversational quality metrics (Distinct-2: 4.223, Distinct-3: 5.595, Distinct-4: 6.155). Human evaluation showed marked improvement in both fluency (1.81) and informativeness (1.63). We observed similar performance gains on the INSPIRED dataset, with notable improvements in recommendation accuracy (R@1: 0.046, R@10: 0.129, R@50: 0.269) and response diversity (Distinct-2: 2.061, Distinct-3: 4.293, Distinct-4: 6.242). The experimental results consistently validate the effectiveness of our approach in both recommendation and conversational tasks. These findings suggest that incorporating social context through CL can significantly improve the personalization and relevance of recommendations in conversational systems.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3067"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453819/pdf/","citationCount":"0","resultStr":"{\"title\":\"A social information sensitive model for conversational recommender systems.\",\"authors\":\"Abdulaziz Mohammed, Mingwei Zhang, Gehad Abdullah Amran, Husam M Alawadh, Ruizhe Wang, Amerah Alabrah, Ali A Al-Bakhrani\",\"doi\":\"10.7717/peerj-cs.3067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conversational recommender systems (CRS) facilitate natural language interactions for more effective item suggestions. While these systems show promise, they face challenges in effectively utilizing and integrating informative data with conversation history through semantic fusion. In this study we present an innovative framework for extracting social information from conversational datasets by inferring ratings and constructing user-item interaction and user-user relationship graphs. We introduce a social information sensitive semantic fusion (SISSF) method that employs contrastive learning (CL) to bridge the semantic gap between generated social information and conversation history. We evaluated the framework on two public datasets (ReDial and INSPIRED) using both automatic and human evaluation metrics. Our SISSF framework demonstrated significant improvements over baseline models across all metrics. For the ReDial dataset, SISSF achieved superior performance in recommendation tasks (R@1: 0.062, R@50: 0.437) and conversational quality metrics (Distinct-2: 4.223, Distinct-3: 5.595, Distinct-4: 6.155). Human evaluation showed marked improvement in both fluency (1.81) and informativeness (1.63). We observed similar performance gains on the INSPIRED dataset, with notable improvements in recommendation accuracy (R@1: 0.046, R@10: 0.129, R@50: 0.269) and response diversity (Distinct-2: 2.061, Distinct-3: 4.293, Distinct-4: 6.242). The experimental results consistently validate the effectiveness of our approach in both recommendation and conversational tasks. These findings suggest that incorporating social context through CL can significantly improve the personalization and relevance of recommendations in conversational systems.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e3067\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453819/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.3067\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3067","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A social information sensitive model for conversational recommender systems.
Conversational recommender systems (CRS) facilitate natural language interactions for more effective item suggestions. While these systems show promise, they face challenges in effectively utilizing and integrating informative data with conversation history through semantic fusion. In this study we present an innovative framework for extracting social information from conversational datasets by inferring ratings and constructing user-item interaction and user-user relationship graphs. We introduce a social information sensitive semantic fusion (SISSF) method that employs contrastive learning (CL) to bridge the semantic gap between generated social information and conversation history. We evaluated the framework on two public datasets (ReDial and INSPIRED) using both automatic and human evaluation metrics. Our SISSF framework demonstrated significant improvements over baseline models across all metrics. For the ReDial dataset, SISSF achieved superior performance in recommendation tasks (R@1: 0.062, R@50: 0.437) and conversational quality metrics (Distinct-2: 4.223, Distinct-3: 5.595, Distinct-4: 6.155). Human evaluation showed marked improvement in both fluency (1.81) and informativeness (1.63). We observed similar performance gains on the INSPIRED dataset, with notable improvements in recommendation accuracy (R@1: 0.046, R@10: 0.129, R@50: 0.269) and response diversity (Distinct-2: 2.061, Distinct-3: 4.293, Distinct-4: 6.242). The experimental results consistently validate the effectiveness of our approach in both recommendation and conversational tasks. These findings suggest that incorporating social context through CL can significantly improve the personalization and relevance of recommendations in conversational systems.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.