{"title":"临床可用的双特异性T细胞接合体中抗cd3抗体的表征。","authors":"Hyeonmin Lee, Yonghee Lee, Junho Chung","doi":"10.1053/j.seminhematol.2025.08.004","DOIUrl":null,"url":null,"abstract":"<p><p>Bispecific T cell engagers (bispecific TCEs) are engineered antibodies that redirect T cells to mediate tumor cell killing by simultaneously binding to CD3 on T cells and tumor-associated antigens. As of July 2025, ten bispecific TCEs are clinically available. The CD3-binding antibodies in these bispecific TCEs can be classified into 6 groups based on the amino acid sequence similarity across their 6 complementarity-determining regions (CDRs). Specifically, antibodies were assigned to the same family if their six CDRs-HCDR1-3 and LCDR1-3-exhibited ≥80% pairwise sequence identity upon multiple sequence alignment. Family 1, derived from OKT3-a mouse hybridoma generated by immunizing BALB/c mice with human T cells-includes only blinatumomab; Family 2, derived from SP34-a rhesus monkey (Macaca mulatta) derived hybridoma specific for human T cells-comprises 5 antibodies; and Family 6, derived from UCHT1-a mouse hybridoma generated by immunizing mice with human T cells-contains only tebentafusp. The origin of the remaining 3 antibodies has not been disclosed and they possess unique CD3-binding sequences. We classified them into their own distinct families (Families 3, 4, and 5). Interestingly, mosunetuzumab (Family 4) showed remarkably lower incidence of adverse events such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and infection compared to other bispecific TCEs even though its affinity for CD3ε was not significantly different. The epitopes of 4 antibodies in Family 2, teclistamab, talquetamab, glofitamab, and tarlatamab were previously defined to be located at the N-terminal region of CD3ε via hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis. In our in silico epitope prediction analysis, the N-terminal region was included in the epitope region of all bispecific TCEs regardless of their family. Blinatumomab (Family 1) and tebentafusp (Family 6) did not bind to the CD3ε homolog of the cynomolgus monkey, whereas the other 8 bispecific TCEs did. This lack of cross-reactivity poses clear disadvantages in their preclinical development, particularly for toxicity and safety evaluation in nonhuman primate models.</p>","PeriodicalId":21684,"journal":{"name":"Seminars in hematology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of anti-CD3 antibodies in clinically available bispecific T cell engagers.\",\"authors\":\"Hyeonmin Lee, Yonghee Lee, Junho Chung\",\"doi\":\"10.1053/j.seminhematol.2025.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bispecific T cell engagers (bispecific TCEs) are engineered antibodies that redirect T cells to mediate tumor cell killing by simultaneously binding to CD3 on T cells and tumor-associated antigens. As of July 2025, ten bispecific TCEs are clinically available. The CD3-binding antibodies in these bispecific TCEs can be classified into 6 groups based on the amino acid sequence similarity across their 6 complementarity-determining regions (CDRs). Specifically, antibodies were assigned to the same family if their six CDRs-HCDR1-3 and LCDR1-3-exhibited ≥80% pairwise sequence identity upon multiple sequence alignment. Family 1, derived from OKT3-a mouse hybridoma generated by immunizing BALB/c mice with human T cells-includes only blinatumomab; Family 2, derived from SP34-a rhesus monkey (Macaca mulatta) derived hybridoma specific for human T cells-comprises 5 antibodies; and Family 6, derived from UCHT1-a mouse hybridoma generated by immunizing mice with human T cells-contains only tebentafusp. The origin of the remaining 3 antibodies has not been disclosed and they possess unique CD3-binding sequences. We classified them into their own distinct families (Families 3, 4, and 5). Interestingly, mosunetuzumab (Family 4) showed remarkably lower incidence of adverse events such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and infection compared to other bispecific TCEs even though its affinity for CD3ε was not significantly different. The epitopes of 4 antibodies in Family 2, teclistamab, talquetamab, glofitamab, and tarlatamab were previously defined to be located at the N-terminal region of CD3ε via hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis. In our in silico epitope prediction analysis, the N-terminal region was included in the epitope region of all bispecific TCEs regardless of their family. Blinatumomab (Family 1) and tebentafusp (Family 6) did not bind to the CD3ε homolog of the cynomolgus monkey, whereas the other 8 bispecific TCEs did. This lack of cross-reactivity poses clear disadvantages in their preclinical development, particularly for toxicity and safety evaluation in nonhuman primate models.</p>\",\"PeriodicalId\":21684,\"journal\":{\"name\":\"Seminars in hematology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1053/j.seminhematol.2025.08.004\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.seminhematol.2025.08.004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Characterization of anti-CD3 antibodies in clinically available bispecific T cell engagers.
Bispecific T cell engagers (bispecific TCEs) are engineered antibodies that redirect T cells to mediate tumor cell killing by simultaneously binding to CD3 on T cells and tumor-associated antigens. As of July 2025, ten bispecific TCEs are clinically available. The CD3-binding antibodies in these bispecific TCEs can be classified into 6 groups based on the amino acid sequence similarity across their 6 complementarity-determining regions (CDRs). Specifically, antibodies were assigned to the same family if their six CDRs-HCDR1-3 and LCDR1-3-exhibited ≥80% pairwise sequence identity upon multiple sequence alignment. Family 1, derived from OKT3-a mouse hybridoma generated by immunizing BALB/c mice with human T cells-includes only blinatumomab; Family 2, derived from SP34-a rhesus monkey (Macaca mulatta) derived hybridoma specific for human T cells-comprises 5 antibodies; and Family 6, derived from UCHT1-a mouse hybridoma generated by immunizing mice with human T cells-contains only tebentafusp. The origin of the remaining 3 antibodies has not been disclosed and they possess unique CD3-binding sequences. We classified them into their own distinct families (Families 3, 4, and 5). Interestingly, mosunetuzumab (Family 4) showed remarkably lower incidence of adverse events such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and infection compared to other bispecific TCEs even though its affinity for CD3ε was not significantly different. The epitopes of 4 antibodies in Family 2, teclistamab, talquetamab, glofitamab, and tarlatamab were previously defined to be located at the N-terminal region of CD3ε via hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis. In our in silico epitope prediction analysis, the N-terminal region was included in the epitope region of all bispecific TCEs regardless of their family. Blinatumomab (Family 1) and tebentafusp (Family 6) did not bind to the CD3ε homolog of the cynomolgus monkey, whereas the other 8 bispecific TCEs did. This lack of cross-reactivity poses clear disadvantages in their preclinical development, particularly for toxicity and safety evaluation in nonhuman primate models.
期刊介绍:
Seminars in Hematology aims to present subjects of current importance in clinical hematology, including related areas of oncology, hematopathology, and blood banking. The journal''s unique issue structure allows for a multi-faceted overview of a single topic via a curated selection of review articles, while also offering a variety of articles that present dynamic and front-line material immediately influencing the field. Seminars in Hematology is devoted to making the important and current work accessible, comprehensible, and valuable to the practicing physician, young investigator, clinical practitioners, and internists/paediatricians with strong interests in blood diseases. Seminars in Hematology publishes original research, reviews, short communications and mini- reviews.