在翻译过程中,肌素/蓖麻毒素环25S rRNA的脱嘌呤是通过小核糖体亚基发出信号的。

IF 5 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Pub Date : 2025-09-23 DOI:10.1261/rna.080559.125
Tanya Prashar, Katalin A Hudak
{"title":"在翻译过程中,肌素/蓖麻毒素环25S rRNA的脱嘌呤是通过小核糖体亚基发出信号的。","authors":"Tanya Prashar, Katalin A Hudak","doi":"10.1261/rna.080559.125","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to their function in protein synthesis, translating ribosomes serve as sensors that communicate the presence of aberrant messenger RNAs (mRNAs); however, how they recognize damage to their ribosomal RNA (rRNA) remains poorly understood. The conserved sarcin/ricin loop (SRL) of the 25S rRNA is a component of the GTPase centre essential for ribosome movement during translation. In this study, we expressed an RNA N-glycosylase called pokeweed antiviral protein (PAP) in yeast Saccharomyces cerevisiae to specifically damage rRNA by hydrolysis of a purine base from the SRL. 25S rRNA depurination inhibited translation elongation, as shown by reduced incorporation of a methionine analog and binding of eukaryotic elongation factor 2 (eEF2) to ribosomes. PAP expression altered sucrose gradient profiles, increasing free subunits and 80S peaks and reducing polysomes without causing ribosome collisions. We discovered depurinated rRNA associated with 80S monosomes and polysomes, suggesting that cells would detect damage to rRNA during active translation. These ribosomes were ubiquitinated by E3 ligases Mag2 and Hel2, elements of the 18S non-functional rRNA decay (NRD) pathway involved in recognizing slow-moving ribosomes. Furthermore, mass spectrometry analysis revealed ubiquitination of ribosomal protein uS3, characteristic of 18S NRD. Even though the SRL is a component of the large ribosomal subunit, its depurination is signaled by ubiquitin ligases that recognize damage to the small subunit. We suggest that slow translation elongation is the factor that communicates SRL depurination to E3 ubiquitin ligases, which extends our understanding of how rRNA integrity is surveilled in yeast.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depurination of sarcin/ricin loop 25S rRNA is signaled through the small ribosomal subunit during translation.\",\"authors\":\"Tanya Prashar, Katalin A Hudak\",\"doi\":\"10.1261/rna.080559.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In addition to their function in protein synthesis, translating ribosomes serve as sensors that communicate the presence of aberrant messenger RNAs (mRNAs); however, how they recognize damage to their ribosomal RNA (rRNA) remains poorly understood. The conserved sarcin/ricin loop (SRL) of the 25S rRNA is a component of the GTPase centre essential for ribosome movement during translation. In this study, we expressed an RNA N-glycosylase called pokeweed antiviral protein (PAP) in yeast Saccharomyces cerevisiae to specifically damage rRNA by hydrolysis of a purine base from the SRL. 25S rRNA depurination inhibited translation elongation, as shown by reduced incorporation of a methionine analog and binding of eukaryotic elongation factor 2 (eEF2) to ribosomes. PAP expression altered sucrose gradient profiles, increasing free subunits and 80S peaks and reducing polysomes without causing ribosome collisions. We discovered depurinated rRNA associated with 80S monosomes and polysomes, suggesting that cells would detect damage to rRNA during active translation. These ribosomes were ubiquitinated by E3 ligases Mag2 and Hel2, elements of the 18S non-functional rRNA decay (NRD) pathway involved in recognizing slow-moving ribosomes. Furthermore, mass spectrometry analysis revealed ubiquitination of ribosomal protein uS3, characteristic of 18S NRD. Even though the SRL is a component of the large ribosomal subunit, its depurination is signaled by ubiquitin ligases that recognize damage to the small subunit. We suggest that slow translation elongation is the factor that communicates SRL depurination to E3 ubiquitin ligases, which extends our understanding of how rRNA integrity is surveilled in yeast.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080559.125\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080559.125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

除了它们在蛋白质合成中的功能外,翻译核糖体还作为传感器传递异常信使rna (mrna)的存在;然而,它们如何识别其核糖体RNA (rRNA)的损伤仍然知之甚少。25S rRNA的保守的sarcin/ricin环(SRL)是翻译过程中核糖体运动所必需的GTPase中心的一个组成部分。在这项研究中,我们在酵母酵母中表达了一种名为美洲商陆抗病毒蛋白(PAP)的RNA n -糖基化酶,通过水解SRL中的嘌呤碱基特异性地破坏rRNA。25S rRNA去嘌呤化抑制翻译延伸,这可以通过减少蛋氨酸类似物的掺入和真核延伸因子2 (eEF2)与核糖体的结合来证明。PAP表达改变了蔗糖梯度谱,增加了自由亚基和80S峰,减少了多聚体,而不引起核糖体碰撞。我们发现去纯化的rRNA与80S单体和多体相关,这表明细胞在活性翻译过程中会检测到rRNA的损伤。这些核糖体被E3连接酶Mag2和Hel2泛素化,这是18S非功能性rRNA衰变(NRD)途径的元件,参与识别缓慢移动的核糖体。此外,质谱分析显示核糖体蛋白uS3泛素化,这是18S NRD的特征。尽管SRL是大核糖体亚基的一个组成部分,但它的去嘌呤化是由识别小亚基损伤的泛素连接酶发出的信号。我们认为,缓慢的翻译延伸是将SRL去纯化传递给E3泛素连接酶的因素,这扩展了我们对酵母中rRNA完整性如何监测的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depurination of sarcin/ricin loop 25S rRNA is signaled through the small ribosomal subunit during translation.

In addition to their function in protein synthesis, translating ribosomes serve as sensors that communicate the presence of aberrant messenger RNAs (mRNAs); however, how they recognize damage to their ribosomal RNA (rRNA) remains poorly understood. The conserved sarcin/ricin loop (SRL) of the 25S rRNA is a component of the GTPase centre essential for ribosome movement during translation. In this study, we expressed an RNA N-glycosylase called pokeweed antiviral protein (PAP) in yeast Saccharomyces cerevisiae to specifically damage rRNA by hydrolysis of a purine base from the SRL. 25S rRNA depurination inhibited translation elongation, as shown by reduced incorporation of a methionine analog and binding of eukaryotic elongation factor 2 (eEF2) to ribosomes. PAP expression altered sucrose gradient profiles, increasing free subunits and 80S peaks and reducing polysomes without causing ribosome collisions. We discovered depurinated rRNA associated with 80S monosomes and polysomes, suggesting that cells would detect damage to rRNA during active translation. These ribosomes were ubiquitinated by E3 ligases Mag2 and Hel2, elements of the 18S non-functional rRNA decay (NRD) pathway involved in recognizing slow-moving ribosomes. Furthermore, mass spectrometry analysis revealed ubiquitination of ribosomal protein uS3, characteristic of 18S NRD. Even though the SRL is a component of the large ribosomal subunit, its depurination is signaled by ubiquitin ligases that recognize damage to the small subunit. We suggest that slow translation elongation is the factor that communicates SRL depurination to E3 ubiquitin ligases, which extends our understanding of how rRNA integrity is surveilled in yeast.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信