{"title":"超越微生物暴露和定植:肠道微生物组的多感官塑造。","authors":"Jake M Robinson, Martin F Breed","doi":"10.1128/msystems.01107-25","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms play a fundamental role in human health, contributing to digestion, immune regulation, and metabolic processes. While direct colonization by environmental microbes through ingestion, inhalation, and dermal contact has been documented, evidence suggests that multisensory interactions with nature-via visual, auditory, tactile, gustatory, and olfactory stimuli-also influence the gut microbiome through psychophysiological and immune-mediated pathways. Exposure to natural environments can regulate stress and immune responses, activate the parasympathetic nervous system, and modulate the hypothalamic-pituitary-adrenal and gut-brain axes, which in turn may alter gut microbiome composition and function. Furthermore, sensory interactions with nature may induce epigenetic changes that impact immune function and microbiome dynamics over time. Here, we review evidence for nature-based indirect shaping of the human microbiome (including multisensory and exposure-immunoregulation pathways) and suggest that after the early-life critical window of microbiome development (0-3 years), these indirect effects likely have a greater influence on gut microbiome dynamics than direct colonization by environmental microbiota (e.g., ingested directly from the air). However, this concept remains to be comprehensively tested. Therefore, understanding the relative contributions of direct microbial colonization versus indirect effects-such as multisensory stimulation and immune modulation-demands more integrated, transdisciplinary research. Integrating these insights into public health strategies, urban design, and nature-based interventions could promote microbiome eubiosis, ultimately improving human (and non-human animal) well-being in an era of increasing environmental and health challenges.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0110725"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond microbial exposure and colonization: multisensory shaping of the gut microbiome.\",\"authors\":\"Jake M Robinson, Martin F Breed\",\"doi\":\"10.1128/msystems.01107-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microorganisms play a fundamental role in human health, contributing to digestion, immune regulation, and metabolic processes. While direct colonization by environmental microbes through ingestion, inhalation, and dermal contact has been documented, evidence suggests that multisensory interactions with nature-via visual, auditory, tactile, gustatory, and olfactory stimuli-also influence the gut microbiome through psychophysiological and immune-mediated pathways. Exposure to natural environments can regulate stress and immune responses, activate the parasympathetic nervous system, and modulate the hypothalamic-pituitary-adrenal and gut-brain axes, which in turn may alter gut microbiome composition and function. Furthermore, sensory interactions with nature may induce epigenetic changes that impact immune function and microbiome dynamics over time. Here, we review evidence for nature-based indirect shaping of the human microbiome (including multisensory and exposure-immunoregulation pathways) and suggest that after the early-life critical window of microbiome development (0-3 years), these indirect effects likely have a greater influence on gut microbiome dynamics than direct colonization by environmental microbiota (e.g., ingested directly from the air). However, this concept remains to be comprehensively tested. Therefore, understanding the relative contributions of direct microbial colonization versus indirect effects-such as multisensory stimulation and immune modulation-demands more integrated, transdisciplinary research. Integrating these insights into public health strategies, urban design, and nature-based interventions could promote microbiome eubiosis, ultimately improving human (and non-human animal) well-being in an era of increasing environmental and health challenges.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":\" \",\"pages\":\"e0110725\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.01107-25\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.01107-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Beyond microbial exposure and colonization: multisensory shaping of the gut microbiome.
Microorganisms play a fundamental role in human health, contributing to digestion, immune regulation, and metabolic processes. While direct colonization by environmental microbes through ingestion, inhalation, and dermal contact has been documented, evidence suggests that multisensory interactions with nature-via visual, auditory, tactile, gustatory, and olfactory stimuli-also influence the gut microbiome through psychophysiological and immune-mediated pathways. Exposure to natural environments can regulate stress and immune responses, activate the parasympathetic nervous system, and modulate the hypothalamic-pituitary-adrenal and gut-brain axes, which in turn may alter gut microbiome composition and function. Furthermore, sensory interactions with nature may induce epigenetic changes that impact immune function and microbiome dynamics over time. Here, we review evidence for nature-based indirect shaping of the human microbiome (including multisensory and exposure-immunoregulation pathways) and suggest that after the early-life critical window of microbiome development (0-3 years), these indirect effects likely have a greater influence on gut microbiome dynamics than direct colonization by environmental microbiota (e.g., ingested directly from the air). However, this concept remains to be comprehensively tested. Therefore, understanding the relative contributions of direct microbial colonization versus indirect effects-such as multisensory stimulation and immune modulation-demands more integrated, transdisciplinary research. Integrating these insights into public health strategies, urban design, and nature-based interventions could promote microbiome eubiosis, ultimately improving human (and non-human animal) well-being in an era of increasing environmental and health challenges.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.