超越微生物暴露和定植:肠道微生物组的多感官塑造。

IF 4.6 2区 生物学 Q1 MICROBIOLOGY
mSystems Pub Date : 2025-09-24 DOI:10.1128/msystems.01107-25
Jake M Robinson, Martin F Breed
{"title":"超越微生物暴露和定植:肠道微生物组的多感官塑造。","authors":"Jake M Robinson, Martin F Breed","doi":"10.1128/msystems.01107-25","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms play a fundamental role in human health, contributing to digestion, immune regulation, and metabolic processes. While direct colonization by environmental microbes through ingestion, inhalation, and dermal contact has been documented, evidence suggests that multisensory interactions with nature-via visual, auditory, tactile, gustatory, and olfactory stimuli-also influence the gut microbiome through psychophysiological and immune-mediated pathways. Exposure to natural environments can regulate stress and immune responses, activate the parasympathetic nervous system, and modulate the hypothalamic-pituitary-adrenal and gut-brain axes, which in turn may alter gut microbiome composition and function. Furthermore, sensory interactions with nature may induce epigenetic changes that impact immune function and microbiome dynamics over time. Here, we review evidence for nature-based indirect shaping of the human microbiome (including multisensory and exposure-immunoregulation pathways) and suggest that after the early-life critical window of microbiome development (0-3 years), these indirect effects likely have a greater influence on gut microbiome dynamics than direct colonization by environmental microbiota (e.g., ingested directly from the air). However, this concept remains to be comprehensively tested. Therefore, understanding the relative contributions of direct microbial colonization versus indirect effects-such as multisensory stimulation and immune modulation-demands more integrated, transdisciplinary research. Integrating these insights into public health strategies, urban design, and nature-based interventions could promote microbiome eubiosis, ultimately improving human (and non-human animal) well-being in an era of increasing environmental and health challenges.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0110725"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond microbial exposure and colonization: multisensory shaping of the gut microbiome.\",\"authors\":\"Jake M Robinson, Martin F Breed\",\"doi\":\"10.1128/msystems.01107-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microorganisms play a fundamental role in human health, contributing to digestion, immune regulation, and metabolic processes. While direct colonization by environmental microbes through ingestion, inhalation, and dermal contact has been documented, evidence suggests that multisensory interactions with nature-via visual, auditory, tactile, gustatory, and olfactory stimuli-also influence the gut microbiome through psychophysiological and immune-mediated pathways. Exposure to natural environments can regulate stress and immune responses, activate the parasympathetic nervous system, and modulate the hypothalamic-pituitary-adrenal and gut-brain axes, which in turn may alter gut microbiome composition and function. Furthermore, sensory interactions with nature may induce epigenetic changes that impact immune function and microbiome dynamics over time. Here, we review evidence for nature-based indirect shaping of the human microbiome (including multisensory and exposure-immunoregulation pathways) and suggest that after the early-life critical window of microbiome development (0-3 years), these indirect effects likely have a greater influence on gut microbiome dynamics than direct colonization by environmental microbiota (e.g., ingested directly from the air). However, this concept remains to be comprehensively tested. Therefore, understanding the relative contributions of direct microbial colonization versus indirect effects-such as multisensory stimulation and immune modulation-demands more integrated, transdisciplinary research. Integrating these insights into public health strategies, urban design, and nature-based interventions could promote microbiome eubiosis, ultimately improving human (and non-human animal) well-being in an era of increasing environmental and health challenges.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":\" \",\"pages\":\"e0110725\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.01107-25\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.01107-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物在人类健康中发挥着重要作用,有助于消化、免疫调节和代谢过程。虽然环境微生物通过摄入、吸入和皮肤接触直接定植已被记录在案,但有证据表明,与自然的多感官相互作用——通过视觉、听觉、触觉、味觉和嗅觉刺激——也通过心理生理和免疫介导的途径影响肠道微生物群。暴露于自然环境中可以调节应激和免疫反应,激活副交感神经系统,调节下丘脑-垂体-肾上腺和肠-脑轴,进而可能改变肠道微生物组的组成和功能。此外,随着时间的推移,与自然的感官相互作用可能会诱发影响免疫功能和微生物组动力学的表观遗传变化。在这里,我们回顾了基于自然的间接塑造人类微生物组的证据(包括多感官和暴露-免疫调节途径),并提出在微生物组发育的早期关键窗口(0-3岁)之后,这些间接影响可能比环境微生物群的直接定植(例如,直接从空气中摄取)对肠道微生物组动力学的影响更大。然而,这一概念仍有待全面检验。因此,了解直接微生物定植与间接效应(如多感官刺激和免疫调节)的相对贡献需要更多的综合跨学科研究。将这些见解整合到公共卫生战略、城市设计和基于自然的干预措施中,可以促进微生物群的益生菌,最终在环境和健康挑战日益增加的时代改善人类(和非人类动物)的福祉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond microbial exposure and colonization: multisensory shaping of the gut microbiome.

Microorganisms play a fundamental role in human health, contributing to digestion, immune regulation, and metabolic processes. While direct colonization by environmental microbes through ingestion, inhalation, and dermal contact has been documented, evidence suggests that multisensory interactions with nature-via visual, auditory, tactile, gustatory, and olfactory stimuli-also influence the gut microbiome through psychophysiological and immune-mediated pathways. Exposure to natural environments can regulate stress and immune responses, activate the parasympathetic nervous system, and modulate the hypothalamic-pituitary-adrenal and gut-brain axes, which in turn may alter gut microbiome composition and function. Furthermore, sensory interactions with nature may induce epigenetic changes that impact immune function and microbiome dynamics over time. Here, we review evidence for nature-based indirect shaping of the human microbiome (including multisensory and exposure-immunoregulation pathways) and suggest that after the early-life critical window of microbiome development (0-3 years), these indirect effects likely have a greater influence on gut microbiome dynamics than direct colonization by environmental microbiota (e.g., ingested directly from the air). However, this concept remains to be comprehensively tested. Therefore, understanding the relative contributions of direct microbial colonization versus indirect effects-such as multisensory stimulation and immune modulation-demands more integrated, transdisciplinary research. Integrating these insights into public health strategies, urban design, and nature-based interventions could promote microbiome eubiosis, ultimately improving human (and non-human animal) well-being in an era of increasing environmental and health challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mSystems
mSystems Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍: mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信