{"title":"肠道菌群与心血管疾病:探索微生物生态失调和代谢物在发病机制和治疗中的作用。","authors":"Amin Mohsenzadeh , Sahar Pourasgar , Amirali Mohammadi , Mahdis Nazari , Soroush Nematollahi , Yeganeh Karimi , Parisa Firoozbakhsh , Hossein Mohsenzadeh , Kasra Kamali , Reza Elahi","doi":"10.1016/j.lfs.2025.123981","DOIUrl":null,"url":null,"abstract":"<div><div>The gut microbiota, a dynamic ecosystem of microorganisms inhabiting the human body, plays a pivotal role in modulating host physiology and immune function, with intense implications for the cardiovascular system. Cardiovascular diseases (CVDs) stand out as the leading cause of mortality worldwide. Gut microbiome dysbiosis is implicated in diverse CVDs, such as hypertension, atherosclerosis, coronary artery disease, heart failure, and myocardial infarction, through mechanisms mediated by microbial-derived metabolites. Key compounds include trimethylamine N-oxide (TMAO) (linked to plaque instability), short-chain fatty acids (SCFAs) (which regulate blood pressure and endothelial function), phenylacetylglutamine (PAGln) (a promoter of thrombotic pathways), and bile acids (influencing lipid metabolism). These metabolites serve as both biomarkers of CVD risk and therapeutic targets. Emerging strategies to modulate the gut microbiota, such as precision probiotics, dietary interventions (e.g., fiber-rich or polyphenol-heavy diets), and pharmacologic inhibitors of microbial enzymes (e.g., TMA lyase blockers), highlight the potential for microbiome-directed therapies. However, challenges remain in elucidating causal microbial pathways, standardizing interventions across diverse populations, and translating preclinical findings into clinical practice. In this mechanistic and translational review, we synthesize current evidence on the bidirectional relationship between gut microbial dysbiosis and CVDs. We explore how modifiable factors, including diet, pharmacotherapy, and early-life microbial colonization, reshape gut communities, driving systemic inflammation, metabolic dysfunction, and vascular pathology. Future research must prioritize longitudinal human studies, multi-omics integration, and randomized trials to harness the gut microbiota's full potential in CVD prevention and personalized treatment.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"381 ","pages":"Article 123981"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The gut microbiota and cardiovascular disease: Exploring the role of microbial dysbiosis and metabolites in pathogenesis and therapeutics\",\"authors\":\"Amin Mohsenzadeh , Sahar Pourasgar , Amirali Mohammadi , Mahdis Nazari , Soroush Nematollahi , Yeganeh Karimi , Parisa Firoozbakhsh , Hossein Mohsenzadeh , Kasra Kamali , Reza Elahi\",\"doi\":\"10.1016/j.lfs.2025.123981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The gut microbiota, a dynamic ecosystem of microorganisms inhabiting the human body, plays a pivotal role in modulating host physiology and immune function, with intense implications for the cardiovascular system. Cardiovascular diseases (CVDs) stand out as the leading cause of mortality worldwide. Gut microbiome dysbiosis is implicated in diverse CVDs, such as hypertension, atherosclerosis, coronary artery disease, heart failure, and myocardial infarction, through mechanisms mediated by microbial-derived metabolites. Key compounds include trimethylamine N-oxide (TMAO) (linked to plaque instability), short-chain fatty acids (SCFAs) (which regulate blood pressure and endothelial function), phenylacetylglutamine (PAGln) (a promoter of thrombotic pathways), and bile acids (influencing lipid metabolism). These metabolites serve as both biomarkers of CVD risk and therapeutic targets. Emerging strategies to modulate the gut microbiota, such as precision probiotics, dietary interventions (e.g., fiber-rich or polyphenol-heavy diets), and pharmacologic inhibitors of microbial enzymes (e.g., TMA lyase blockers), highlight the potential for microbiome-directed therapies. However, challenges remain in elucidating causal microbial pathways, standardizing interventions across diverse populations, and translating preclinical findings into clinical practice. In this mechanistic and translational review, we synthesize current evidence on the bidirectional relationship between gut microbial dysbiosis and CVDs. We explore how modifiable factors, including diet, pharmacotherapy, and early-life microbial colonization, reshape gut communities, driving systemic inflammation, metabolic dysfunction, and vascular pathology. Future research must prioritize longitudinal human studies, multi-omics integration, and randomized trials to harness the gut microbiota's full potential in CVD prevention and personalized treatment.</div></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":\"381 \",\"pages\":\"Article 123981\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320525006174\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525006174","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
The gut microbiota and cardiovascular disease: Exploring the role of microbial dysbiosis and metabolites in pathogenesis and therapeutics
The gut microbiota, a dynamic ecosystem of microorganisms inhabiting the human body, plays a pivotal role in modulating host physiology and immune function, with intense implications for the cardiovascular system. Cardiovascular diseases (CVDs) stand out as the leading cause of mortality worldwide. Gut microbiome dysbiosis is implicated in diverse CVDs, such as hypertension, atherosclerosis, coronary artery disease, heart failure, and myocardial infarction, through mechanisms mediated by microbial-derived metabolites. Key compounds include trimethylamine N-oxide (TMAO) (linked to plaque instability), short-chain fatty acids (SCFAs) (which regulate blood pressure and endothelial function), phenylacetylglutamine (PAGln) (a promoter of thrombotic pathways), and bile acids (influencing lipid metabolism). These metabolites serve as both biomarkers of CVD risk and therapeutic targets. Emerging strategies to modulate the gut microbiota, such as precision probiotics, dietary interventions (e.g., fiber-rich or polyphenol-heavy diets), and pharmacologic inhibitors of microbial enzymes (e.g., TMA lyase blockers), highlight the potential for microbiome-directed therapies. However, challenges remain in elucidating causal microbial pathways, standardizing interventions across diverse populations, and translating preclinical findings into clinical practice. In this mechanistic and translational review, we synthesize current evidence on the bidirectional relationship between gut microbial dysbiosis and CVDs. We explore how modifiable factors, including diet, pharmacotherapy, and early-life microbial colonization, reshape gut communities, driving systemic inflammation, metabolic dysfunction, and vascular pathology. Future research must prioritize longitudinal human studies, multi-omics integration, and randomized trials to harness the gut microbiota's full potential in CVD prevention and personalized treatment.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.