aars1介导的H3K18和STAT1的乳酸化促进糖尿病肾病中的铁下垂。

IF 15.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jia Hong, Hongjiao Xu, Lang Yu, Zhuang Yu, Xiangyuan Chen, Zhipeng Meng, Jiali Zhu, Jinbao Li, Minmin Zhu
{"title":"aars1介导的H3K18和STAT1的乳酸化促进糖尿病肾病中的铁下垂。","authors":"Jia Hong, Hongjiao Xu, Lang Yu, Zhuang Yu, Xiangyuan Chen, Zhipeng Meng, Jiali Zhu, Jinbao Li, Minmin Zhu","doi":"10.1038/s41418-025-01587-4","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is the primary cause of end-stage renal disease worldwide. Recent studies have revealed that lactate-mediated histone lactylation, which functions as a novel epigenetic modification, is involved in the occurrence and development of diabetes-related complications. However, little is known about the role of lactyltransferase in DN. Alanyl-tRNA synthetase 1 (AARS1) was identified as a novel lactyltransferase that modulates histone H3-lysine-18 lactylation (H3K18la). In the present study, we determined whether AARS1-mediated H3K18la participates in the pathogenesis of DN. More importantly, we explored the potential mechanism involved. A mouse DN model consisting of both wild-type and alanyl-tRNA synthetase (AARS1) heterozygote (AARS1<sup>+/-</sup>) mice was utilized in this study. Transcriptomic and lipidomic analyses, combined with a variety of molecular biological methodologies, were employed to elucidate the potential mechanism by which AARS1 regulates ferroptosis in DN. Our results indicated that the increases in AARS1 and H3K18la expression were involved in kidney dysfunction and renal cell death via the modulation of ferroptosis in the DN model. Moreover, AARS1 induced lipid peroxidation by increasing fatty acid elongase-5 (ELOVL5) transcription, ultimately contributing to ferroptosis induction. Furthermore, AARS1 interacted with signal transducer and activator of transcription 1 (STAT1) to jointly regulate ELOVL5 transcription. Additionally, treatment with the STAT1-specific inhibitor fludarabine delayed DN progression. In addition, we observed that AARS1 modulated the lactylation of both STAT1 and H3K18 to regulate ELOVL5 transcription, thus triggering ferroptosis. Inhibition of AARS1-induced lactylation via β-alanine attenuated ferroptosis in DN model mice and hyperglycaemic cells. The present study showed that AARS1 induced the lactylation of H3K18 and STAT1 to regulate ELOVL5 transcription, thus triggering ferroptosis in a diabetic nephropathy model.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":" ","pages":""},"PeriodicalIF":15.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AARS1-mediated lactylation of H3K18 and STAT1 promotes ferroptosis in diabetic nephropathy.\",\"authors\":\"Jia Hong, Hongjiao Xu, Lang Yu, Zhuang Yu, Xiangyuan Chen, Zhipeng Meng, Jiali Zhu, Jinbao Li, Minmin Zhu\",\"doi\":\"10.1038/s41418-025-01587-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic nephropathy (DN) is the primary cause of end-stage renal disease worldwide. Recent studies have revealed that lactate-mediated histone lactylation, which functions as a novel epigenetic modification, is involved in the occurrence and development of diabetes-related complications. However, little is known about the role of lactyltransferase in DN. Alanyl-tRNA synthetase 1 (AARS1) was identified as a novel lactyltransferase that modulates histone H3-lysine-18 lactylation (H3K18la). In the present study, we determined whether AARS1-mediated H3K18la participates in the pathogenesis of DN. More importantly, we explored the potential mechanism involved. A mouse DN model consisting of both wild-type and alanyl-tRNA synthetase (AARS1) heterozygote (AARS1<sup>+/-</sup>) mice was utilized in this study. Transcriptomic and lipidomic analyses, combined with a variety of molecular biological methodologies, were employed to elucidate the potential mechanism by which AARS1 regulates ferroptosis in DN. Our results indicated that the increases in AARS1 and H3K18la expression were involved in kidney dysfunction and renal cell death via the modulation of ferroptosis in the DN model. Moreover, AARS1 induced lipid peroxidation by increasing fatty acid elongase-5 (ELOVL5) transcription, ultimately contributing to ferroptosis induction. Furthermore, AARS1 interacted with signal transducer and activator of transcription 1 (STAT1) to jointly regulate ELOVL5 transcription. Additionally, treatment with the STAT1-specific inhibitor fludarabine delayed DN progression. In addition, we observed that AARS1 modulated the lactylation of both STAT1 and H3K18 to regulate ELOVL5 transcription, thus triggering ferroptosis. Inhibition of AARS1-induced lactylation via β-alanine attenuated ferroptosis in DN model mice and hyperglycaemic cells. The present study showed that AARS1 induced the lactylation of H3K18 and STAT1 to regulate ELOVL5 transcription, thus triggering ferroptosis in a diabetic nephropathy model.</p>\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.4000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41418-025-01587-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01587-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病肾病(DN)是终末期肾脏疾病的主要原因。最近的研究表明,乳酸介导的组蛋白乳酸化作为一种新的表观遗传修饰,参与了糖尿病相关并发症的发生和发展。然而,对乳酸转移酶在DN中的作用知之甚少。Alanyl-tRNA合成酶1 (AARS1)是一种调节组蛋白h3 -赖氨酸-18乳酸化(H3K18la)的新型乳酸转移酶。在本研究中,我们确定了aars1介导的H3K18la是否参与了DN的发病机制。更重要的是,我们探索了潜在的机制。本研究采用野生型和alanyl-tRNA合成酶(AARS1)杂合子(AARS1+/-)小鼠组成的小鼠DN模型。转录组学和脂质组学分析结合多种分子生物学方法,阐明了AARS1调控DN中铁下垂的潜在机制。我们的研究结果表明,在DN模型中,AARS1和H3K18la表达的增加通过对铁下沉的调节参与肾功能障碍和肾细胞死亡。此外,AARS1通过增加脂肪酸延长酶-5 (ELOVL5)转录诱导脂质过氧化,最终导致铁下垂。此外,AARS1与信号换能器和转录激活器1 (STAT1)相互作用,共同调控ELOVL5的转录。此外,用stat1特异性抑制剂氟达拉滨治疗可以延缓DN的进展。此外,我们观察到AARS1通过调节STAT1和H3K18的乳酸化来调节ELOVL5的转录,从而引发铁凋亡。通过β-丙氨酸减轻DN模型小鼠和高血糖细胞的铁下垂抑制aars1诱导的乳酸化。本研究表明,在糖尿病肾病模型中,AARS1诱导H3K18和STAT1的乳酸化,从而调控ELOVL5的转录,从而引发铁凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AARS1-mediated lactylation of H3K18 and STAT1 promotes ferroptosis in diabetic nephropathy.

Diabetic nephropathy (DN) is the primary cause of end-stage renal disease worldwide. Recent studies have revealed that lactate-mediated histone lactylation, which functions as a novel epigenetic modification, is involved in the occurrence and development of diabetes-related complications. However, little is known about the role of lactyltransferase in DN. Alanyl-tRNA synthetase 1 (AARS1) was identified as a novel lactyltransferase that modulates histone H3-lysine-18 lactylation (H3K18la). In the present study, we determined whether AARS1-mediated H3K18la participates in the pathogenesis of DN. More importantly, we explored the potential mechanism involved. A mouse DN model consisting of both wild-type and alanyl-tRNA synthetase (AARS1) heterozygote (AARS1+/-) mice was utilized in this study. Transcriptomic and lipidomic analyses, combined with a variety of molecular biological methodologies, were employed to elucidate the potential mechanism by which AARS1 regulates ferroptosis in DN. Our results indicated that the increases in AARS1 and H3K18la expression were involved in kidney dysfunction and renal cell death via the modulation of ferroptosis in the DN model. Moreover, AARS1 induced lipid peroxidation by increasing fatty acid elongase-5 (ELOVL5) transcription, ultimately contributing to ferroptosis induction. Furthermore, AARS1 interacted with signal transducer and activator of transcription 1 (STAT1) to jointly regulate ELOVL5 transcription. Additionally, treatment with the STAT1-specific inhibitor fludarabine delayed DN progression. In addition, we observed that AARS1 modulated the lactylation of both STAT1 and H3K18 to regulate ELOVL5 transcription, thus triggering ferroptosis. Inhibition of AARS1-induced lactylation via β-alanine attenuated ferroptosis in DN model mice and hyperglycaemic cells. The present study showed that AARS1 induced the lactylation of H3K18 and STAT1 to regulate ELOVL5 transcription, thus triggering ferroptosis in a diabetic nephropathy model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信