HNMD-CNN:一种用于三维MRI图像中神经胶质瘤精确分类的分层窄化多深度卷积神经网络

Nayer Seyed Hoseini, Masoud Kargar, Ali Bayani, Sondos Ardebili
{"title":"HNMD-CNN:一种用于三维MRI图像中神经胶质瘤精确分类的分层窄化多深度卷积神经网络","authors":"Nayer Seyed Hoseini,&nbsp;Masoud Kargar,&nbsp;Ali Bayani,&nbsp;Sondos Ardebili","doi":"10.1002/cso2.70002","DOIUrl":null,"url":null,"abstract":"<p>Brain tumors, though rare, are significant health risks, often reaching critical stages before diagnosis. Gliomas, classified as high grade (HGG) and low grade (LGG), require early detection to reduce mortality. While two-dimensional imaging has improved diagnostic techniques, three-dimensional imaging provides a more comprehensive view. This research introduces the Hierarchical Narrowing Multi-Deep Convolutional Neural Network (HNMD-CNN), a novel method for classifying brain tumors using 3D MRI images. The HNMD-CNN employs a hierarchical narrowing filtering strategy inspired by radiologists' models. Initially, large filters identify the tumor area and extract general features, followed by smaller filters to focus on specific tumor characteristics. This approach optimizes feature extraction and representation, improving diagnostic accuracy. We conducted extensive experiments using 3D MRI images from the BraTS2018 and BraTS2019 datasets, demonstrating the HNMD-CNN's ability to enhance convergence speed and classification accuracy without auxiliary algorithms. Our method achieved a remarkable classification accuracy of 99.93%, representing a significant advancement in 3D imaging for glioma classification. This work provides a powerful tool for early detection and accurate diagnosis of gliomas.</p>","PeriodicalId":72658,"journal":{"name":"Computational and systems oncology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cso2.70002","citationCount":"0","resultStr":"{\"title\":\"HNMD-CNN: A Hierarchical Narrowing Multi-Deep Convolutional Neural Network for Precision Glioma Classification in 3D MRI Images\",\"authors\":\"Nayer Seyed Hoseini,&nbsp;Masoud Kargar,&nbsp;Ali Bayani,&nbsp;Sondos Ardebili\",\"doi\":\"10.1002/cso2.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Brain tumors, though rare, are significant health risks, often reaching critical stages before diagnosis. Gliomas, classified as high grade (HGG) and low grade (LGG), require early detection to reduce mortality. While two-dimensional imaging has improved diagnostic techniques, three-dimensional imaging provides a more comprehensive view. This research introduces the Hierarchical Narrowing Multi-Deep Convolutional Neural Network (HNMD-CNN), a novel method for classifying brain tumors using 3D MRI images. The HNMD-CNN employs a hierarchical narrowing filtering strategy inspired by radiologists' models. Initially, large filters identify the tumor area and extract general features, followed by smaller filters to focus on specific tumor characteristics. This approach optimizes feature extraction and representation, improving diagnostic accuracy. We conducted extensive experiments using 3D MRI images from the BraTS2018 and BraTS2019 datasets, demonstrating the HNMD-CNN's ability to enhance convergence speed and classification accuracy without auxiliary algorithms. Our method achieved a remarkable classification accuracy of 99.93%, representing a significant advancement in 3D imaging for glioma classification. This work provides a powerful tool for early detection and accurate diagnosis of gliomas.</p>\",\"PeriodicalId\":72658,\"journal\":{\"name\":\"Computational and systems oncology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cso2.70002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and systems oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cso2.70002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and systems oncology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cso2.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤虽然罕见,但对健康有重大威胁,通常在诊断前就已经到了关键阶段。胶质瘤分为高级别(HGG)和低级别(LGG),需要早期发现以降低死亡率。虽然二维成像改善了诊断技术,但三维成像提供了更全面的视图。本研究介绍了一种利用三维MRI图像对脑肿瘤进行分类的新方法——层次窄化多深度卷积神经网络(HNMD-CNN)。HNMD-CNN采用了受放射科医生模型启发的分层缩小过滤策略。最初,大的滤波器识别肿瘤区域并提取一般特征,然后使用较小的滤波器关注特定的肿瘤特征。该方法优化了特征提取和表征,提高了诊断的准确性。我们使用BraTS2018和BraTS2019数据集的3D MRI图像进行了大量实验,证明了HNMD-CNN在没有辅助算法的情况下提高收敛速度和分类精度的能力。我们的方法达到了99.93%的分类准确率,代表了三维成像在胶质瘤分类方面的重大进步。这项工作为胶质瘤的早期发现和准确诊断提供了有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

HNMD-CNN: A Hierarchical Narrowing Multi-Deep Convolutional Neural Network for Precision Glioma Classification in 3D MRI Images

HNMD-CNN: A Hierarchical Narrowing Multi-Deep Convolutional Neural Network for Precision Glioma Classification in 3D MRI Images

HNMD-CNN: A Hierarchical Narrowing Multi-Deep Convolutional Neural Network for Precision Glioma Classification in 3D MRI Images

Brain tumors, though rare, are significant health risks, often reaching critical stages before diagnosis. Gliomas, classified as high grade (HGG) and low grade (LGG), require early detection to reduce mortality. While two-dimensional imaging has improved diagnostic techniques, three-dimensional imaging provides a more comprehensive view. This research introduces the Hierarchical Narrowing Multi-Deep Convolutional Neural Network (HNMD-CNN), a novel method for classifying brain tumors using 3D MRI images. The HNMD-CNN employs a hierarchical narrowing filtering strategy inspired by radiologists' models. Initially, large filters identify the tumor area and extract general features, followed by smaller filters to focus on specific tumor characteristics. This approach optimizes feature extraction and representation, improving diagnostic accuracy. We conducted extensive experiments using 3D MRI images from the BraTS2018 and BraTS2019 datasets, demonstrating the HNMD-CNN's ability to enhance convergence speed and classification accuracy without auxiliary algorithms. Our method achieved a remarkable classification accuracy of 99.93%, representing a significant advancement in 3D imaging for glioma classification. This work provides a powerful tool for early detection and accurate diagnosis of gliomas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信