金属随机疲劳寿命建模的机器学习辅助灵敏度分析

IF 3.6 Q1 ENGINEERING, MECHANICAL
Tran C. H. Nguyen, N. Vu-Bac
{"title":"金属随机疲劳寿命建模的机器学习辅助灵敏度分析","authors":"Tran C. H. Nguyen,&nbsp;N. Vu-Bac","doi":"10.1002/msd2.70024","DOIUrl":null,"url":null,"abstract":"<p>Predicting fatigue life with precision requires more than isolated evaluations of mechanical properties; it requires an integrated approach that captures the interdependencies between various parameters, including elastic modulus, tensile strength, yield strength, and strain-hardening exponent. Neglecting these correlations in sensitivity analyses can compromise prediction accuracy and physical interpretability. In this study, we introduce a dependency-aware sensitivity analysis framework, assisted by machine learning-based surrogate models, to evaluate the contributions of these mechanical properties to fatigue life variability. Tensile strength emerged as the most influential parameter, with significant second-order interactions, particularly between tensile and yield strength, highlighting the central role of coupled effects in fatigue mechanisms. By addressing these interdependencies, the proposed approach improves the reliability of fatigue life predictions and offers a solid foundation for the optimization of metallic components subjected to cyclic stresses.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 3","pages":"481-494"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70024","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Assisted Sensitivity Analysis for Stochastic Fatigue Life Modeling of Metals\",\"authors\":\"Tran C. H. Nguyen,&nbsp;N. Vu-Bac\",\"doi\":\"10.1002/msd2.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting fatigue life with precision requires more than isolated evaluations of mechanical properties; it requires an integrated approach that captures the interdependencies between various parameters, including elastic modulus, tensile strength, yield strength, and strain-hardening exponent. Neglecting these correlations in sensitivity analyses can compromise prediction accuracy and physical interpretability. In this study, we introduce a dependency-aware sensitivity analysis framework, assisted by machine learning-based surrogate models, to evaluate the contributions of these mechanical properties to fatigue life variability. Tensile strength emerged as the most influential parameter, with significant second-order interactions, particularly between tensile and yield strength, highlighting the central role of coupled effects in fatigue mechanisms. By addressing these interdependencies, the proposed approach improves the reliability of fatigue life predictions and offers a solid foundation for the optimization of metallic components subjected to cyclic stresses.</p>\",\"PeriodicalId\":60486,\"journal\":{\"name\":\"国际机械系统动力学学报(英文)\",\"volume\":\"5 3\",\"pages\":\"481-494\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际机械系统动力学学报(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

精确预测疲劳寿命需要的不仅仅是孤立的机械性能评估;它需要一种综合的方法来捕捉各种参数之间的相互依赖关系,包括弹性模量、抗拉强度、屈服强度和应变硬化指数。在敏感性分析中忽略这些相关性会损害预测的准确性和物理可解释性。在这项研究中,我们引入了一个依赖感知的敏感性分析框架,在基于机器学习的代理模型的辅助下,评估这些机械性能对疲劳寿命变异性的贡献。抗拉强度是最具影响力的参数,具有显著的二阶相互作用,特别是在抗拉强度和屈服强度之间,突出了耦合效应在疲劳机制中的核心作用。通过解决这些相互依赖性,提出的方法提高了疲劳寿命预测的可靠性,并为循环应力下金属部件的优化提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning-Assisted Sensitivity Analysis for Stochastic Fatigue Life Modeling of Metals

Machine Learning-Assisted Sensitivity Analysis for Stochastic Fatigue Life Modeling of Metals

Predicting fatigue life with precision requires more than isolated evaluations of mechanical properties; it requires an integrated approach that captures the interdependencies between various parameters, including elastic modulus, tensile strength, yield strength, and strain-hardening exponent. Neglecting these correlations in sensitivity analyses can compromise prediction accuracy and physical interpretability. In this study, we introduce a dependency-aware sensitivity analysis framework, assisted by machine learning-based surrogate models, to evaluate the contributions of these mechanical properties to fatigue life variability. Tensile strength emerged as the most influential parameter, with significant second-order interactions, particularly between tensile and yield strength, highlighting the central role of coupled effects in fatigue mechanisms. By addressing these interdependencies, the proposed approach improves the reliability of fatigue life predictions and offers a solid foundation for the optimization of metallic components subjected to cyclic stresses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信