David C. Fernández-Remolar, Wladyslaw Altermann, David Gomez-Ortiz, Brian Hynek, Matthew R. M. Izawa, Ernst Hauber, Solmaz Adeli, Ricardo Amils, Ting Huang, Nigel Blamey, Angelo Pio Rossi, Laetitia Le Deit
{"title":"还原酸性热液在火星Sirenum中氯化物矿床形成中的作用","authors":"David C. Fernández-Remolar, Wladyslaw Altermann, David Gomez-Ortiz, Brian Hynek, Matthew R. M. Izawa, Ernst Hauber, Solmaz Adeli, Ricardo Amils, Ting Huang, Nigel Blamey, Angelo Pio Rossi, Laetitia Le Deit","doi":"10.1029/2024JE008837","DOIUrl":null,"url":null,"abstract":"<p>Orbital remote sensing has shown that some regions of the ancient Martian crust contain hundreds of discrete terrains covered by chloride-rich evaporites. In terrestrial evaporitic systems, evaporite sequences typically begin with the deposition of carbonates, followed by sulfates, and finally chlorides, a depositional sequence that has not yet been found on Mars. Instead, sulfate deposits are always separated spatially and temporally from chlorides, suggesting two different depositional regimes. Here, we present a model driven by the Martian chlorine geochemical cycle that allows the formation of chlorides whilst simultaneously inhibiting sulfate and carbonate precipitation. In this model, the chlorides are produced under reducing and acidic conditions. Chloride deposition was driven by hydrothermal alteration of the Martian crust associated with faults, followed by precipitation from ascending saline solutions along the tectonic conduits. These processes occurred under a relatively thick and reducing atmosphere (1–0.1 bar). The crustal circulation of chloride-precipitating fluids may have been driven by tectonic suction and pumping processes. Parental brines from hydrothermal activity sourcing chloride might also have contributed to the sulfates found in Cross and Columbus craters of Terra Sirenum. Our study integrates orbital imaging, topography, and spectroscopy with geochemical modeling and terrestrial analogs. We propose that the Terra Sirenum chloride deposits derive from subsurface brines, with deposition driven using tectonic and hydrothermal processes. Under inferred reducing and anoxic conditions, chloride formed with minimal co-precipitation of sulfates and carbonates. Unlike isolated chloride deposits confined to topographic lows, the Terra Sirenum chlorides are associated with linear features interpreted as faults.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 8","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Reducing and Acidic Hydrothermal Fluids in Forming Chloride Deposits in Terra Sirenum, Mars\",\"authors\":\"David C. Fernández-Remolar, Wladyslaw Altermann, David Gomez-Ortiz, Brian Hynek, Matthew R. M. Izawa, Ernst Hauber, Solmaz Adeli, Ricardo Amils, Ting Huang, Nigel Blamey, Angelo Pio Rossi, Laetitia Le Deit\",\"doi\":\"10.1029/2024JE008837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Orbital remote sensing has shown that some regions of the ancient Martian crust contain hundreds of discrete terrains covered by chloride-rich evaporites. In terrestrial evaporitic systems, evaporite sequences typically begin with the deposition of carbonates, followed by sulfates, and finally chlorides, a depositional sequence that has not yet been found on Mars. Instead, sulfate deposits are always separated spatially and temporally from chlorides, suggesting two different depositional regimes. Here, we present a model driven by the Martian chlorine geochemical cycle that allows the formation of chlorides whilst simultaneously inhibiting sulfate and carbonate precipitation. In this model, the chlorides are produced under reducing and acidic conditions. Chloride deposition was driven by hydrothermal alteration of the Martian crust associated with faults, followed by precipitation from ascending saline solutions along the tectonic conduits. These processes occurred under a relatively thick and reducing atmosphere (1–0.1 bar). The crustal circulation of chloride-precipitating fluids may have been driven by tectonic suction and pumping processes. Parental brines from hydrothermal activity sourcing chloride might also have contributed to the sulfates found in Cross and Columbus craters of Terra Sirenum. Our study integrates orbital imaging, topography, and spectroscopy with geochemical modeling and terrestrial analogs. We propose that the Terra Sirenum chloride deposits derive from subsurface brines, with deposition driven using tectonic and hydrothermal processes. Under inferred reducing and anoxic conditions, chloride formed with minimal co-precipitation of sulfates and carbonates. Unlike isolated chloride deposits confined to topographic lows, the Terra Sirenum chlorides are associated with linear features interpreted as faults.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 8\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JE008837\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JE008837","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Role of Reducing and Acidic Hydrothermal Fluids in Forming Chloride Deposits in Terra Sirenum, Mars
Orbital remote sensing has shown that some regions of the ancient Martian crust contain hundreds of discrete terrains covered by chloride-rich evaporites. In terrestrial evaporitic systems, evaporite sequences typically begin with the deposition of carbonates, followed by sulfates, and finally chlorides, a depositional sequence that has not yet been found on Mars. Instead, sulfate deposits are always separated spatially and temporally from chlorides, suggesting two different depositional regimes. Here, we present a model driven by the Martian chlorine geochemical cycle that allows the formation of chlorides whilst simultaneously inhibiting sulfate and carbonate precipitation. In this model, the chlorides are produced under reducing and acidic conditions. Chloride deposition was driven by hydrothermal alteration of the Martian crust associated with faults, followed by precipitation from ascending saline solutions along the tectonic conduits. These processes occurred under a relatively thick and reducing atmosphere (1–0.1 bar). The crustal circulation of chloride-precipitating fluids may have been driven by tectonic suction and pumping processes. Parental brines from hydrothermal activity sourcing chloride might also have contributed to the sulfates found in Cross and Columbus craters of Terra Sirenum. Our study integrates orbital imaging, topography, and spectroscopy with geochemical modeling and terrestrial analogs. We propose that the Terra Sirenum chloride deposits derive from subsurface brines, with deposition driven using tectonic and hydrothermal processes. Under inferred reducing and anoxic conditions, chloride formed with minimal co-precipitation of sulfates and carbonates. Unlike isolated chloride deposits confined to topographic lows, the Terra Sirenum chlorides are associated with linear features interpreted as faults.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.