{"title":"基于特权信息范式的低耦合垂直联邦学习","authors":"Wei Dai;Teng Cui;Tong Zhang;Badong Chen","doi":"10.1109/TETCI.2025.3543769","DOIUrl":null,"url":null,"abstract":"Vertical Federated Learning (VFL) enables the construction of models by combining clients with different features without compromising privacy. Existing VFL methods exhibit tightly coupled participant parameters, resulting in substantial interdependencies among clients during the prediction phase, which significantly hampers the model's usability. To tackle these challenges, this paper studies a VFL approach with low coupling of parameters between clients. Drawing inspiration from federated cooperation and teacher-supervised learning, we propose a low-coupling vertical federated learning with privileged information paradigm (VFL+), allowing participants to make autonomous predictions. Specifically, VFL+ treats information from other clients as privileged data during the training phase rather than the testing phase, thereby achieving independence in individual model predictions. Subsequently, this paper further investigates three typical scenarios of vertical cooperation and designs corresponding cooperative frameworks. Systematic experiments on real data sets demonstrate the effectiveness of the proposed method.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 5","pages":"3533-3547"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VFL+: Low-Coupling Vertical Federated Learning With Privileged Information Paradigm\",\"authors\":\"Wei Dai;Teng Cui;Tong Zhang;Badong Chen\",\"doi\":\"10.1109/TETCI.2025.3543769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertical Federated Learning (VFL) enables the construction of models by combining clients with different features without compromising privacy. Existing VFL methods exhibit tightly coupled participant parameters, resulting in substantial interdependencies among clients during the prediction phase, which significantly hampers the model's usability. To tackle these challenges, this paper studies a VFL approach with low coupling of parameters between clients. Drawing inspiration from federated cooperation and teacher-supervised learning, we propose a low-coupling vertical federated learning with privileged information paradigm (VFL+), allowing participants to make autonomous predictions. Specifically, VFL+ treats information from other clients as privileged data during the training phase rather than the testing phase, thereby achieving independence in individual model predictions. Subsequently, this paper further investigates three typical scenarios of vertical cooperation and designs corresponding cooperative frameworks. Systematic experiments on real data sets demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"9 5\",\"pages\":\"3533-3547\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10924149/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10924149/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
VFL+: Low-Coupling Vertical Federated Learning With Privileged Information Paradigm
Vertical Federated Learning (VFL) enables the construction of models by combining clients with different features without compromising privacy. Existing VFL methods exhibit tightly coupled participant parameters, resulting in substantial interdependencies among clients during the prediction phase, which significantly hampers the model's usability. To tackle these challenges, this paper studies a VFL approach with low coupling of parameters between clients. Drawing inspiration from federated cooperation and teacher-supervised learning, we propose a low-coupling vertical federated learning with privileged information paradigm (VFL+), allowing participants to make autonomous predictions. Specifically, VFL+ treats information from other clients as privileged data during the training phase rather than the testing phase, thereby achieving independence in individual model predictions. Subsequently, this paper further investigates three typical scenarios of vertical cooperation and designs corresponding cooperative frameworks. Systematic experiments on real data sets demonstrate the effectiveness of the proposed method.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.