{"title":"AE-Net:基于前景增强的人脸增强神经网络","authors":"Shangdong Zhu;Yunzhou Zhang;Yixiu Liu;Yu Feng;Sonya Coleman;Dermot Kerr","doi":"10.1109/TETCI.2025.3543775","DOIUrl":null,"url":null,"abstract":"Person re-identification (Re-ID) in environments subject to intensive appearance and background variations due to seasons, weather conditions, illumination and human factors is a challenging task. A wide variety of existing algorithms address this problem either for appearance changes or background clutter, but neglect to explore a powerful framework to consider solving both cases simultaneously. To overcome this limitation, this research introduces an effective appearance-enriched neural network (AE-Net) with foreground enhancement based on generative adversarial nets (GANs) and an attention mechanism to enrich the appearance of person images while suppressing the influence of the background. Specifically, a channel-grouped convolution and squeeze weighted (CGCSW) module is first proposed to extract the powerful feature representation of individuals. Secondly, a foreground-enhanced and background-suppressed (FEBS) module is proposed to enhance the foreground of individual samples while weakening the impact of the background. Thirdly, A stage-wise consistency loss is presented to enable our model maintain consistent foreground-enhanced and background-suppressed stages. Finally, this study evaluates the proposed method and compares it with state-of-the-art approaches on three public datasets. The experimental results demonstrate the effectiveness and improvements achieved by using the presented architecture.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 5","pages":"3518-3532"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AE-Net: Appearance-Enriched Neural Network With Foreground Enhancement for Person Re-Identification\",\"authors\":\"Shangdong Zhu;Yunzhou Zhang;Yixiu Liu;Yu Feng;Sonya Coleman;Dermot Kerr\",\"doi\":\"10.1109/TETCI.2025.3543775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Person re-identification (Re-ID) in environments subject to intensive appearance and background variations due to seasons, weather conditions, illumination and human factors is a challenging task. A wide variety of existing algorithms address this problem either for appearance changes or background clutter, but neglect to explore a powerful framework to consider solving both cases simultaneously. To overcome this limitation, this research introduces an effective appearance-enriched neural network (AE-Net) with foreground enhancement based on generative adversarial nets (GANs) and an attention mechanism to enrich the appearance of person images while suppressing the influence of the background. Specifically, a channel-grouped convolution and squeeze weighted (CGCSW) module is first proposed to extract the powerful feature representation of individuals. Secondly, a foreground-enhanced and background-suppressed (FEBS) module is proposed to enhance the foreground of individual samples while weakening the impact of the background. Thirdly, A stage-wise consistency loss is presented to enable our model maintain consistent foreground-enhanced and background-suppressed stages. Finally, this study evaluates the proposed method and compares it with state-of-the-art approaches on three public datasets. The experimental results demonstrate the effectiveness and improvements achieved by using the presented architecture.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"9 5\",\"pages\":\"3518-3532\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10919189/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10919189/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
AE-Net: Appearance-Enriched Neural Network With Foreground Enhancement for Person Re-Identification
Person re-identification (Re-ID) in environments subject to intensive appearance and background variations due to seasons, weather conditions, illumination and human factors is a challenging task. A wide variety of existing algorithms address this problem either for appearance changes or background clutter, but neglect to explore a powerful framework to consider solving both cases simultaneously. To overcome this limitation, this research introduces an effective appearance-enriched neural network (AE-Net) with foreground enhancement based on generative adversarial nets (GANs) and an attention mechanism to enrich the appearance of person images while suppressing the influence of the background. Specifically, a channel-grouped convolution and squeeze weighted (CGCSW) module is first proposed to extract the powerful feature representation of individuals. Secondly, a foreground-enhanced and background-suppressed (FEBS) module is proposed to enhance the foreground of individual samples while weakening the impact of the background. Thirdly, A stage-wise consistency loss is presented to enable our model maintain consistent foreground-enhanced and background-suppressed stages. Finally, this study evaluates the proposed method and compares it with state-of-the-art approaches on three public datasets. The experimental results demonstrate the effectiveness and improvements achieved by using the presented architecture.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.