基于深度积分粒子法和GIS的热海泥石流建模:流动特征和未来风险评估

F.H. Chowdhury, T. Matsushima
{"title":"基于深度积分粒子法和GIS的热海泥石流建模:流动特征和未来风险评估","authors":"F.H. Chowdhury,&nbsp;T. Matsushima","doi":"10.1016/j.nhres.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>The Depth-Integrated Particle Method (DIPM) is a numerical approach for simulating sediment disasters, such as debris flows and mudflows. This study applies DIPM to the 2021 Atami debris flow in Shizuoka Prefecture, Japan, triggered by heavy rainfall and slope collapse. DIPM models the moving mass as computational particles, represented as soil columns, with pairwise interactions between particles derived from the hydraulic gradient of the soil columns. A numerical test confirmed the reliability of the hydraulic pressure gradient model. Digital Elevation Models (DEMs) were created from pre-disaster grid data at 0.5-m resolution, processed into 5-m and 1-m meshes. Sensitivity analyses identified optimal parameters (Manning's coefficient, <span><math><mrow><mi>n</mi></mrow></math></span> ​= ​0.1; critical deposition angle, <span><math><mrow><msub><mi>i</mi><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span> ​= ​8.5°), closely matching observed flow velocities and average sediment deposition height (1.65 ​m). Cross-sectional comparisons at the existing check dam validated the model, demonstrating its applicability for hazard assessment. DIPM also evaluated the Izusan check dam, confirming its capacity of 10,800 ​m<sup>3</sup> aligns with simulation predictions, supporting its role in debris flow mitigation. These findings highlight versatility of DIPM for debris flow modeling and risk evaluation.</div></div>","PeriodicalId":100943,"journal":{"name":"Natural Hazards Research","volume":"5 3","pages":"Pages 705-718"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Atami debris flow using the depth-integrated particle method and GIS: Flow characteristics and future risk assessment\",\"authors\":\"F.H. Chowdhury,&nbsp;T. Matsushima\",\"doi\":\"10.1016/j.nhres.2025.03.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Depth-Integrated Particle Method (DIPM) is a numerical approach for simulating sediment disasters, such as debris flows and mudflows. This study applies DIPM to the 2021 Atami debris flow in Shizuoka Prefecture, Japan, triggered by heavy rainfall and slope collapse. DIPM models the moving mass as computational particles, represented as soil columns, with pairwise interactions between particles derived from the hydraulic gradient of the soil columns. A numerical test confirmed the reliability of the hydraulic pressure gradient model. Digital Elevation Models (DEMs) were created from pre-disaster grid data at 0.5-m resolution, processed into 5-m and 1-m meshes. Sensitivity analyses identified optimal parameters (Manning's coefficient, <span><math><mrow><mi>n</mi></mrow></math></span> ​= ​0.1; critical deposition angle, <span><math><mrow><msub><mi>i</mi><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span> ​= ​8.5°), closely matching observed flow velocities and average sediment deposition height (1.65 ​m). Cross-sectional comparisons at the existing check dam validated the model, demonstrating its applicability for hazard assessment. DIPM also evaluated the Izusan check dam, confirming its capacity of 10,800 ​m<sup>3</sup> aligns with simulation predictions, supporting its role in debris flow mitigation. These findings highlight versatility of DIPM for debris flow modeling and risk evaluation.</div></div>\",\"PeriodicalId\":100943,\"journal\":{\"name\":\"Natural Hazards Research\",\"volume\":\"5 3\",\"pages\":\"Pages 705-718\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Hazards Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666592125000381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666592125000381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度积分粒子法(deep - integrated Particle Method, DIPM)是一种模拟泥石流等泥沙灾害的数值方法。本研究将DIPM应用于日本静冈县2021年因强降雨和坡面崩塌引发的热海泥石流。DIPM将移动质量建模为计算粒子,表示为土柱,粒子之间的成对相互作用来源于土柱的水力梯度。数值试验验证了水力梯度模型的可靠性。数字高程模型(dem)由0.5 m分辨率的灾前网格数据创建,处理成5-m和1-m网格。灵敏度分析确定了最佳参数(曼宁系数,n = 0.1;临界沉积角,icr = 8.5°),与观测到的流速和平均沉积高度(1.65 m)密切匹配。在现有的拦河坝上进行横断面比较,验证了模型的有效性,证明了其对灾害评估的适用性。DIPM还对Izusan止回坝进行了评估,确认其10,800立方米的容量与模拟预测相符,支持其在泥石流缓解方面的作用。这些发现突出了DIPM在泥石流建模和风险评估方面的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the Atami debris flow using the depth-integrated particle method and GIS: Flow characteristics and future risk assessment
The Depth-Integrated Particle Method (DIPM) is a numerical approach for simulating sediment disasters, such as debris flows and mudflows. This study applies DIPM to the 2021 Atami debris flow in Shizuoka Prefecture, Japan, triggered by heavy rainfall and slope collapse. DIPM models the moving mass as computational particles, represented as soil columns, with pairwise interactions between particles derived from the hydraulic gradient of the soil columns. A numerical test confirmed the reliability of the hydraulic pressure gradient model. Digital Elevation Models (DEMs) were created from pre-disaster grid data at 0.5-m resolution, processed into 5-m and 1-m meshes. Sensitivity analyses identified optimal parameters (Manning's coefficient, n ​= ​0.1; critical deposition angle, icr ​= ​8.5°), closely matching observed flow velocities and average sediment deposition height (1.65 ​m). Cross-sectional comparisons at the existing check dam validated the model, demonstrating its applicability for hazard assessment. DIPM also evaluated the Izusan check dam, confirming its capacity of 10,800 ​m3 aligns with simulation predictions, supporting its role in debris flow mitigation. These findings highlight versatility of DIPM for debris flow modeling and risk evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信