优化多层石墨硅阳极:提高锂离子电池性能的计算方法

Juan C. Rubio, Martin Bolduc
{"title":"优化多层石墨硅阳极:提高锂离子电池性能的计算方法","authors":"Juan C. Rubio,&nbsp;Martin Bolduc","doi":"10.1016/j.fub.2025.100112","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluated the performance of multilayer anodes for lithium-ion batteries, composed of an outer graphite layer in direct contact with the electrolyte and an inner graphite–silicon composite layer, using finite-element simulations and multivariate statistical analysis. Various silicon contents such as 10, 20 percent and 30 %, layer thickness configurations including 30–30 µm, 20–40 µm and 10–50 µm, and graphite particle sizes of 2.5, 5 and 7.5 µm were systematically examined while maintaining a total anode thickness of 60 µm. In addition, the cathode material NMC 622 and the electrolyte LiPF6 in 3:7 EC:EMC were specified in the simulated cell configuration. The methodology integrated COMSOL Multiphysics® simulations with a simulation design (DOE) constructed in JMP, enabling the identification of key response parameters such as capacity loss percentage, solid-electrolyte interphase (SEI) layer thickness, potential drop across the SEI and electrolyte consumption over 2000 simulated cycles. Simulation results indicated that a 30–30 µm configuration, employing 2.5 µm graphite particles and a silicon content in the range of 20–30 % within the composite layer, substantially reduces potential drop, electrolyte consumption and SEI growth compared to modeled single-layer 100 % graphite or homogeneous silicon–graphite anodes. These findings underscore the viability of dual-layer structures for leveraging silicon’s high theoretical capacity without compromising electrochemical stability, and they highlight the crucial role of simulation-driven optimization in predicting long-term performance in batteries with enhanced energy density and extended cycle life.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"8 ","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing multilayer graphite-silicon anodes: A computational approach to enhancing lithium-Ion battery performance\",\"authors\":\"Juan C. Rubio,&nbsp;Martin Bolduc\",\"doi\":\"10.1016/j.fub.2025.100112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study evaluated the performance of multilayer anodes for lithium-ion batteries, composed of an outer graphite layer in direct contact with the electrolyte and an inner graphite–silicon composite layer, using finite-element simulations and multivariate statistical analysis. Various silicon contents such as 10, 20 percent and 30 %, layer thickness configurations including 30–30 µm, 20–40 µm and 10–50 µm, and graphite particle sizes of 2.5, 5 and 7.5 µm were systematically examined while maintaining a total anode thickness of 60 µm. In addition, the cathode material NMC 622 and the electrolyte LiPF6 in 3:7 EC:EMC were specified in the simulated cell configuration. The methodology integrated COMSOL Multiphysics® simulations with a simulation design (DOE) constructed in JMP, enabling the identification of key response parameters such as capacity loss percentage, solid-electrolyte interphase (SEI) layer thickness, potential drop across the SEI and electrolyte consumption over 2000 simulated cycles. Simulation results indicated that a 30–30 µm configuration, employing 2.5 µm graphite particles and a silicon content in the range of 20–30 % within the composite layer, substantially reduces potential drop, electrolyte consumption and SEI growth compared to modeled single-layer 100 % graphite or homogeneous silicon–graphite anodes. These findings underscore the viability of dual-layer structures for leveraging silicon’s high theoretical capacity without compromising electrochemical stability, and they highlight the crucial role of simulation-driven optimization in predicting long-term performance in batteries with enhanced energy density and extended cycle life.</div></div>\",\"PeriodicalId\":100560,\"journal\":{\"name\":\"Future Batteries\",\"volume\":\"8 \",\"pages\":\"Article 100112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950264025000917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过有限元模拟和多元统计分析,评估了锂离子电池多层阳极的性能。多层阳极由与电解质直接接触的外层石墨层和内层石墨硅复合层组成。在保持阳极总厚度为60 µm的情况下,系统地检查了各种硅含量(如10%,20%和30% %),层厚度配置(包括30 - 30 µm, 20 - 40 µm和10 - 50 µm)以及石墨粒径(2.5,5和7.5 µm)。此外,在模拟的电池配置中指定了3:7 EC:EMC中的正极材料NMC 622和电解质LiPF6。该方法将COMSOL Multiphysics®模拟与JMP中构建的模拟设计(DOE)集成在一起,能够识别关键响应参数,如容量损失百分比、固体电解质界面(SEI)层厚度、SEI之间的电位下降和超过2000个模拟循环的电解质消耗。模拟结果表明,在30-30 µm的结构中,采用2.5 µm的石墨颗粒,复合层内硅含量在20-30 %范围内,与模拟的单层100% %石墨或均匀硅-石墨阳极相比,显著降低了电位下降、电解质消耗和SEI增长。这些发现强调了双层结构在不影响电化学稳定性的情况下利用硅的高理论容量的可行性,并强调了模拟驱动优化在预测具有增强能量密度和延长循环寿命的电池的长期性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing multilayer graphite-silicon anodes: A computational approach to enhancing lithium-Ion battery performance
This study evaluated the performance of multilayer anodes for lithium-ion batteries, composed of an outer graphite layer in direct contact with the electrolyte and an inner graphite–silicon composite layer, using finite-element simulations and multivariate statistical analysis. Various silicon contents such as 10, 20 percent and 30 %, layer thickness configurations including 30–30 µm, 20–40 µm and 10–50 µm, and graphite particle sizes of 2.5, 5 and 7.5 µm were systematically examined while maintaining a total anode thickness of 60 µm. In addition, the cathode material NMC 622 and the electrolyte LiPF6 in 3:7 EC:EMC were specified in the simulated cell configuration. The methodology integrated COMSOL Multiphysics® simulations with a simulation design (DOE) constructed in JMP, enabling the identification of key response parameters such as capacity loss percentage, solid-electrolyte interphase (SEI) layer thickness, potential drop across the SEI and electrolyte consumption over 2000 simulated cycles. Simulation results indicated that a 30–30 µm configuration, employing 2.5 µm graphite particles and a silicon content in the range of 20–30 % within the composite layer, substantially reduces potential drop, electrolyte consumption and SEI growth compared to modeled single-layer 100 % graphite or homogeneous silicon–graphite anodes. These findings underscore the viability of dual-layer structures for leveraging silicon’s high theoretical capacity without compromising electrochemical stability, and they highlight the crucial role of simulation-driven optimization in predicting long-term performance in batteries with enhanced energy density and extended cycle life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信