用尺度桥接法预测有机金属纳米颗粒的光学性质:包埋的重要性

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Mariia Poleva*, , , Benedikt Zerulla, , , Christof Holzer, , , Vlasta Bonačić-Koutecký, , , Anna Pniakowska, , , Joanna Olesiak-Banska, , , Rodolphe Antoine, , , Ivan Fernandez-Corbaton, , , Carsten Rockstuhl*, , and , Marjan Krstić*, 
{"title":"用尺度桥接法预测有机金属纳米颗粒的光学性质:包埋的重要性","authors":"Mariia Poleva*,&nbsp;, ,&nbsp;Benedikt Zerulla,&nbsp;, ,&nbsp;Christof Holzer,&nbsp;, ,&nbsp;Vlasta Bonačić-Koutecký,&nbsp;, ,&nbsp;Anna Pniakowska,&nbsp;, ,&nbsp;Joanna Olesiak-Banska,&nbsp;, ,&nbsp;Rodolphe Antoine,&nbsp;, ,&nbsp;Ivan Fernandez-Corbaton,&nbsp;, ,&nbsp;Carsten Rockstuhl*,&nbsp;, and ,&nbsp;Marjan Krstić*,&nbsp;","doi":"10.1021/acs.jpcc.5c03310","DOIUrl":null,"url":null,"abstract":"<p >It remains a prime question of how to describe the optical properties of large molecular clusters accurately. Quantum chemical methods capture essential electronic details but are infeasible for entire clusters, while optical simulations handle cluster-scale effects but miss crucial quantum effects. To overcome such limitations, we apply here a multiscale modeling approach, combining precise quantum chemistry calculations with Maxwell scattering simulations, to study the linear and nonlinear optical response of finite-size supramolecular gold–cysteine nanoparticles dispersed in water. In this approach, every molecular unit that forms the cluster is represented by a polarizability and a hyperpolarizability, and the overall response is obtained by solving an optical multiple scattering problem. We particularly demonstrate how important it is to accurately consider the environment of the individual molecular units when computing their polarizability and hyperpolarizability. In our quantum chemical simulations, we do so at the level of a static partial charge field that represents the presence of other molecular units. Without correctly considering these effects of the embedding, predictions would deviate from experimental observations, even qualitatively. Our findings pave the way for more accurate predictions of the optical response of complex molecular systems, which is crucial for advancing applications in nanophotonics, biosensing, and molecular optoelectronics.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 38","pages":"17119–17131"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Optical Properties of Organometallic Nanoparticles with a Scale-Bridging Method: The Importance of the Embedding\",\"authors\":\"Mariia Poleva*,&nbsp;, ,&nbsp;Benedikt Zerulla,&nbsp;, ,&nbsp;Christof Holzer,&nbsp;, ,&nbsp;Vlasta Bonačić-Koutecký,&nbsp;, ,&nbsp;Anna Pniakowska,&nbsp;, ,&nbsp;Joanna Olesiak-Banska,&nbsp;, ,&nbsp;Rodolphe Antoine,&nbsp;, ,&nbsp;Ivan Fernandez-Corbaton,&nbsp;, ,&nbsp;Carsten Rockstuhl*,&nbsp;, and ,&nbsp;Marjan Krstić*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c03310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >It remains a prime question of how to describe the optical properties of large molecular clusters accurately. Quantum chemical methods capture essential electronic details but are infeasible for entire clusters, while optical simulations handle cluster-scale effects but miss crucial quantum effects. To overcome such limitations, we apply here a multiscale modeling approach, combining precise quantum chemistry calculations with Maxwell scattering simulations, to study the linear and nonlinear optical response of finite-size supramolecular gold–cysteine nanoparticles dispersed in water. In this approach, every molecular unit that forms the cluster is represented by a polarizability and a hyperpolarizability, and the overall response is obtained by solving an optical multiple scattering problem. We particularly demonstrate how important it is to accurately consider the environment of the individual molecular units when computing their polarizability and hyperpolarizability. In our quantum chemical simulations, we do so at the level of a static partial charge field that represents the presence of other molecular units. Without correctly considering these effects of the embedding, predictions would deviate from experimental observations, even qualitatively. Our findings pave the way for more accurate predictions of the optical response of complex molecular systems, which is crucial for advancing applications in nanophotonics, biosensing, and molecular optoelectronics.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 38\",\"pages\":\"17119–17131\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c03310\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c03310","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

如何准确地描述大分子团簇的光学性质仍然是一个首要问题。量子化学方法捕捉到基本的电子细节,但对整个星团来说是不可行的,而光学模拟处理了星团尺度效应,但错过了关键的量子效应。为了克服这些限制,我们采用多尺度建模方法,结合精确的量子化学计算和麦克斯韦散射模拟,研究了分散在水中的有限尺寸超分子金-半胱氨酸纳米粒子的线性和非线性光学响应。在该方法中,形成簇的每个分子单元由极化率和超极化率表示,并通过求解光学多次散射问题获得总体响应。我们特别证明了在计算单个分子单元的极化率和超极化率时,准确考虑其环境是多么重要。在我们的量子化学模拟中,我们在代表其他分子单位存在的静态部分电荷场的水平上这样做。如果没有正确考虑嵌入的这些影响,预测将偏离实验观察,甚至是定性的。我们的发现为更准确地预测复杂分子系统的光学响应铺平了道路,这对于推进纳米光子学、生物传感和分子光电子学的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting the Optical Properties of Organometallic Nanoparticles with a Scale-Bridging Method: The Importance of the Embedding

Predicting the Optical Properties of Organometallic Nanoparticles with a Scale-Bridging Method: The Importance of the Embedding

It remains a prime question of how to describe the optical properties of large molecular clusters accurately. Quantum chemical methods capture essential electronic details but are infeasible for entire clusters, while optical simulations handle cluster-scale effects but miss crucial quantum effects. To overcome such limitations, we apply here a multiscale modeling approach, combining precise quantum chemistry calculations with Maxwell scattering simulations, to study the linear and nonlinear optical response of finite-size supramolecular gold–cysteine nanoparticles dispersed in water. In this approach, every molecular unit that forms the cluster is represented by a polarizability and a hyperpolarizability, and the overall response is obtained by solving an optical multiple scattering problem. We particularly demonstrate how important it is to accurately consider the environment of the individual molecular units when computing their polarizability and hyperpolarizability. In our quantum chemical simulations, we do so at the level of a static partial charge field that represents the presence of other molecular units. Without correctly considering these effects of the embedding, predictions would deviate from experimental observations, even qualitatively. Our findings pave the way for more accurate predictions of the optical response of complex molecular systems, which is crucial for advancing applications in nanophotonics, biosensing, and molecular optoelectronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信