抛物线偏微分方程约束下曲面边界形状优化的近似体积形状梯度

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Leonardo Mutti, Michael Ulbrich
{"title":"抛物线偏微分方程约束下曲面边界形状优化的近似体积形状梯度","authors":"Leonardo Mutti, Michael Ulbrich","doi":"10.1137/24m1681938","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2026-2047, October 2025. <br/> Abstract. We quantify the accuracy of the approximate shape gradient for a shape optimization problem constrained by parabolic PDEs. The focus is on the volume form of the shape gradient, which is discretized using the finite element method and the implicit Euler scheme. Our estimate goes beyond previous work done in the elliptic setting and considers the error introduced by polygonal approximation of curved domains. Numerical experiments support the theoretical findings, and the code is made publicly available.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"156 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating Volumetric Shape Gradients for Shape Optimization with Curved Boundaries Constrained by Parabolic PDEs\",\"authors\":\"Leonardo Mutti, Michael Ulbrich\",\"doi\":\"10.1137/24m1681938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2026-2047, October 2025. <br/> Abstract. We quantify the accuracy of the approximate shape gradient for a shape optimization problem constrained by parabolic PDEs. The focus is on the volume form of the shape gradient, which is discretized using the finite element method and the implicit Euler scheme. Our estimate goes beyond previous work done in the elliptic setting and considers the error introduced by polygonal approximation of curved domains. Numerical experiments support the theoretical findings, and the code is made publicly available.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1681938\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1681938","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第5期,第2026-2047页,2025年10月。摘要。我们量化了抛物线偏微分方程约束下的形状优化问题的近似形状梯度的精度。重点研究了形状梯度的体积形式,采用有限元法和隐式欧拉格式对其进行离散。我们的估计超越了以往在椭圆环境下所做的工作,并考虑了曲面域多边形近似所带来的误差。数值实验支持理论发现,代码已公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating Volumetric Shape Gradients for Shape Optimization with Curved Boundaries Constrained by Parabolic PDEs
SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2026-2047, October 2025.
Abstract. We quantify the accuracy of the approximate shape gradient for a shape optimization problem constrained by parabolic PDEs. The focus is on the volume form of the shape gradient, which is discretized using the finite element method and the implicit Euler scheme. Our estimate goes beyond previous work done in the elliptic setting and considers the error introduced by polygonal approximation of curved domains. Numerical experiments support the theoretical findings, and the code is made publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信