非调和校正在二维合金Al0.75Si0.25B2超导相中的作用:从头算各向异性Migdal-Eliashberg理论的见解。

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Prutthipong Tsuppayakorn-Aek,Wiwittawin Sukmas,Ryo Maezono,Thiti Bovornratanaraks
{"title":"非调和校正在二维合金Al0.75Si0.25B2超导相中的作用:从头算各向异性Migdal-Eliashberg理论的见解。","authors":"Prutthipong Tsuppayakorn-Aek,Wiwittawin Sukmas,Ryo Maezono,Thiti Bovornratanaraks","doi":"10.1039/d5cp02537k","DOIUrl":null,"url":null,"abstract":"Exploring emergent phases in monolayer alloy superconductors represents a forefront endeavor in contemporary quantum materials research. Following the successful exploration of AlB2 in a superconducting state, we provide a significant reference for examining superconductivity in Si-substituted AlB2 using first-principles predictions. This noteworthy outcome highlights that Al0.75Si0.25B2 is one of the energetically stable configurations within the Al1-xSixB2 system that exhibits the superconducting state. However, the anharmonic effects on this phase significantly impact its phonon spectra, potentially influencing dynamical stability. In specific cases, the application of the stochastic self-consistent harmonic approximation enables us to capture how thermally induced lattice vibrations impact the equilibrium structure of the material. It is observed that the inclusion of anharmonic corrections brings the predicted superconducting characteristics into closer agreement with those derived from the harmonic model, thereby resolving the issue of imaginary frequencies. As a result, we demonstrate that the Allen-Dynes modified McMillan scheme predicts a critical temperature (Tc) of approximately 15 K. This can be enhanced to 41 K through the utilization of the anisotropic Migdal-Eliashberg theory. Our findings reveal that the role of anharmonicity-arising from minor corrections in the acoustic regime contributed by the high atomic mass-in Al0.75Si0.25B2 theoretically leads to superconductivity, with Tc being consistent with values predicted within the harmonic approximation.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"13 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of anharmonic correction in superconducting phase of two-dimensional alloy Al0.75Si0.25B2: insight from ab initio anisotropic Migdal-Eliashberg theory.\",\"authors\":\"Prutthipong Tsuppayakorn-Aek,Wiwittawin Sukmas,Ryo Maezono,Thiti Bovornratanaraks\",\"doi\":\"10.1039/d5cp02537k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring emergent phases in monolayer alloy superconductors represents a forefront endeavor in contemporary quantum materials research. Following the successful exploration of AlB2 in a superconducting state, we provide a significant reference for examining superconductivity in Si-substituted AlB2 using first-principles predictions. This noteworthy outcome highlights that Al0.75Si0.25B2 is one of the energetically stable configurations within the Al1-xSixB2 system that exhibits the superconducting state. However, the anharmonic effects on this phase significantly impact its phonon spectra, potentially influencing dynamical stability. In specific cases, the application of the stochastic self-consistent harmonic approximation enables us to capture how thermally induced lattice vibrations impact the equilibrium structure of the material. It is observed that the inclusion of anharmonic corrections brings the predicted superconducting characteristics into closer agreement with those derived from the harmonic model, thereby resolving the issue of imaginary frequencies. As a result, we demonstrate that the Allen-Dynes modified McMillan scheme predicts a critical temperature (Tc) of approximately 15 K. This can be enhanced to 41 K through the utilization of the anisotropic Migdal-Eliashberg theory. Our findings reveal that the role of anharmonicity-arising from minor corrections in the acoustic regime contributed by the high atomic mass-in Al0.75Si0.25B2 theoretically leads to superconductivity, with Tc being consistent with values predicted within the harmonic approximation.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cp02537k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp02537k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

探索单层合金超导体的涌现相是当代量子材料研究的前沿。在成功探索超导态AlB2之后,我们为利用第一性原理预测来检验si取代AlB2的超导性提供了重要的参考。这一结果表明Al0.75Si0.25B2是Al1-xSixB2体系中表现出超导态的能量稳定构型之一。然而,该相的非谐波效应显著影响其声子谱,可能影响其动力学稳定性。在特定情况下,随机自洽谐波近似的应用使我们能够捕捉到热诱导晶格振动如何影响材料的平衡结构。观察到,包含非谐波修正使预测的超导特性与谐波模型的特性更接近,从而解决了虚频率问题。结果表明,Allen-Dynes修正McMillan方案预测的临界温度(Tc)约为15 K。利用各向异性Migdal-Eliashberg理论可以将其提高到41 K。我们的研究结果表明,理论上,Al0.75Si0.25B2中由高原子质量引起的微小声学修正所引起的非调和性的作用导致了超导性,Tc与调和近似内预测的值一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of anharmonic correction in superconducting phase of two-dimensional alloy Al0.75Si0.25B2: insight from ab initio anisotropic Migdal-Eliashberg theory.
Exploring emergent phases in monolayer alloy superconductors represents a forefront endeavor in contemporary quantum materials research. Following the successful exploration of AlB2 in a superconducting state, we provide a significant reference for examining superconductivity in Si-substituted AlB2 using first-principles predictions. This noteworthy outcome highlights that Al0.75Si0.25B2 is one of the energetically stable configurations within the Al1-xSixB2 system that exhibits the superconducting state. However, the anharmonic effects on this phase significantly impact its phonon spectra, potentially influencing dynamical stability. In specific cases, the application of the stochastic self-consistent harmonic approximation enables us to capture how thermally induced lattice vibrations impact the equilibrium structure of the material. It is observed that the inclusion of anharmonic corrections brings the predicted superconducting characteristics into closer agreement with those derived from the harmonic model, thereby resolving the issue of imaginary frequencies. As a result, we demonstrate that the Allen-Dynes modified McMillan scheme predicts a critical temperature (Tc) of approximately 15 K. This can be enhanced to 41 K through the utilization of the anisotropic Migdal-Eliashberg theory. Our findings reveal that the role of anharmonicity-arising from minor corrections in the acoustic regime contributed by the high atomic mass-in Al0.75Si0.25B2 theoretically leads to superconductivity, with Tc being consistent with values predicted within the harmonic approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信