靶向骨形态发生蛋白信号通路的脂肪细胞治疗减轻继发性淋巴水肿的纤维脂肪组织沉积。

IF 12 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ziyu Chen,Mengfan Wu,Samerender Nagam Hanumantharao,Pratik Koirala,Soheila Ali Akbari Ghavimi,Ashley E Siegel,Chang Liu,Erin Taylor,Justin Broyles,Indranil Sinha,Vicki Rosen,Shailesh Agarwal
{"title":"靶向骨形态发生蛋白信号通路的脂肪细胞治疗减轻继发性淋巴水肿的纤维脂肪组织沉积。","authors":"Ziyu Chen,Mengfan Wu,Samerender Nagam Hanumantharao,Pratik Koirala,Soheila Ali Akbari Ghavimi,Ashley E Siegel,Chang Liu,Erin Taylor,Justin Broyles,Indranil Sinha,Vicki Rosen,Shailesh Agarwal","doi":"10.1016/j.ymthe.2025.09.034","DOIUrl":null,"url":null,"abstract":"Secondary lymphedema is a chronic disease affecting an isolated limb following lymph node resection for cancer treatment. Management options are limited and onerous, leading to near-universal progression to subcutaneous fibroadipose tissue deposition. Here, we identify bone morphogenetic protein ligands (BMPs) as mediators of fibroadipose tissue deposition through in vitro experiments with human lymphedema fluid and BMP-specific inhibitor. Systemic in vivo delivery of BMP inhibitor reduces fibroadipose tissue deposition in a mouse model of hindlimb secondary lymphedema. Considering systemic delivery may be undesirable for an anatomically-isolated disease, we engineered a cell therapy using purified adipocytes, aiming for clinical translation in a resource- and time- constrained environment requiring only mechanical manipulation. We then devised a strategy for gene delivery into adipocytes and verified the secretion of the recombinant peptide inhibitor of BMP ligands. Upon in vivo delivery of the engineered adipocytes, we verified secretion of the BMP inhibitor and a reduction in fibroadipose tissue deposition in the mice hindlimb. Our findings highlight BMPs as signaling mediators for fibroadipose tissue deposition and provide a blueprint for a cell therapy using genetically-modified adipocytes for local drug delivery. This approach may be in a point-of-care strategy and potentially be amenable to various conditions.","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":"18 1","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adipocyte cell therapy targeting bone morphogenetic protein signaling alleviates fibroadipose tissue deposition in secondary lymphedema.\",\"authors\":\"Ziyu Chen,Mengfan Wu,Samerender Nagam Hanumantharao,Pratik Koirala,Soheila Ali Akbari Ghavimi,Ashley E Siegel,Chang Liu,Erin Taylor,Justin Broyles,Indranil Sinha,Vicki Rosen,Shailesh Agarwal\",\"doi\":\"10.1016/j.ymthe.2025.09.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Secondary lymphedema is a chronic disease affecting an isolated limb following lymph node resection for cancer treatment. Management options are limited and onerous, leading to near-universal progression to subcutaneous fibroadipose tissue deposition. Here, we identify bone morphogenetic protein ligands (BMPs) as mediators of fibroadipose tissue deposition through in vitro experiments with human lymphedema fluid and BMP-specific inhibitor. Systemic in vivo delivery of BMP inhibitor reduces fibroadipose tissue deposition in a mouse model of hindlimb secondary lymphedema. Considering systemic delivery may be undesirable for an anatomically-isolated disease, we engineered a cell therapy using purified adipocytes, aiming for clinical translation in a resource- and time- constrained environment requiring only mechanical manipulation. We then devised a strategy for gene delivery into adipocytes and verified the secretion of the recombinant peptide inhibitor of BMP ligands. Upon in vivo delivery of the engineered adipocytes, we verified secretion of the BMP inhibitor and a reduction in fibroadipose tissue deposition in the mice hindlimb. Our findings highlight BMPs as signaling mediators for fibroadipose tissue deposition and provide a blueprint for a cell therapy using genetically-modified adipocytes for local drug delivery. This approach may be in a point-of-care strategy and potentially be amenable to various conditions.\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2025.09.034\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.09.034","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

继发性淋巴水肿是一种慢性疾病,影响孤立肢体的淋巴结切除术后的癌症治疗。治疗选择是有限和繁重的,导致几乎普遍进展到皮下纤维脂肪组织沉积。在这里,我们通过与人淋巴水肿液和bmp特异性抑制剂的体外实验,确定骨形态发生蛋白配体(BMPs)作为纤维脂肪组织沉积的介质。在小鼠后肢继发性淋巴水肿模型中,BMP抑制剂的体内系统递送可减少纤维脂肪组织沉积。考虑到解剖学上孤立的疾病可能不希望全身递送,我们设计了一种使用纯化脂肪细胞的细胞疗法,旨在在资源和时间有限的环境下进行临床转化,只需要机械操作。然后,我们设计了一种将基因传递到脂肪细胞的策略,并验证了BMP配体的重组肽抑制剂的分泌。在体内输送工程脂肪细胞后,我们证实了BMP抑制剂的分泌和小鼠后肢纤维脂肪组织沉积的减少。我们的研究结果强调了bmp作为纤维脂肪组织沉积的信号介质,并为使用基因修饰脂肪细胞进行局部药物递送的细胞治疗提供了蓝图。这种方法可能是一种即时护理策略,可能适用于各种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adipocyte cell therapy targeting bone morphogenetic protein signaling alleviates fibroadipose tissue deposition in secondary lymphedema.
Secondary lymphedema is a chronic disease affecting an isolated limb following lymph node resection for cancer treatment. Management options are limited and onerous, leading to near-universal progression to subcutaneous fibroadipose tissue deposition. Here, we identify bone morphogenetic protein ligands (BMPs) as mediators of fibroadipose tissue deposition through in vitro experiments with human lymphedema fluid and BMP-specific inhibitor. Systemic in vivo delivery of BMP inhibitor reduces fibroadipose tissue deposition in a mouse model of hindlimb secondary lymphedema. Considering systemic delivery may be undesirable for an anatomically-isolated disease, we engineered a cell therapy using purified adipocytes, aiming for clinical translation in a resource- and time- constrained environment requiring only mechanical manipulation. We then devised a strategy for gene delivery into adipocytes and verified the secretion of the recombinant peptide inhibitor of BMP ligands. Upon in vivo delivery of the engineered adipocytes, we verified secretion of the BMP inhibitor and a reduction in fibroadipose tissue deposition in the mice hindlimb. Our findings highlight BMPs as signaling mediators for fibroadipose tissue deposition and provide a blueprint for a cell therapy using genetically-modified adipocytes for local drug delivery. This approach may be in a point-of-care strategy and potentially be amenable to various conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信