DFG-PCN:基于度柔性点图的点云补全。

IF 6.5
Zhenyu Shu, Jian Yao, Shiqing Xin
{"title":"DFG-PCN:基于度柔性点图的点云补全。","authors":"Zhenyu Shu, Jian Yao, Shiqing Xin","doi":"10.1109/TVCG.2025.3612379","DOIUrl":null,"url":null,"abstract":"<p><p>Point cloud completion is a vital task focused on reconstructing complete point clouds and addressing the incompleteness caused by occlusion and limited sensor resolution. Traditional methods relying on fixed local region partitioning, such as k-nearest neighbors, which fail to account for the highly uneven distribution of geometric complexity across different regions of a shape. This limitation leads to inefficient representation and suboptimal reconstruction, especially in areas with fine-grained details or structural discontinuities. This paper proposes a point cloud completion framework called Degree-Flexible Point Graph Completion Network (DFG-PCN). It adaptively assigns node degrees using a detail-aware metric that combines feature variation and curvature, focusing on structurally important regions. We further introduce a geometry-aware graph integration module that uses Manhattan distance for edge aggregation and detail-guided fusion of local and global features to enhance representation. Extensive experiments on multiple benchmark datasets demonstrate that our method consistently outperforms state-of-the-art approaches.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFG-PCN: Point Cloud Completion with Degree-Flexible Point Graph.\",\"authors\":\"Zhenyu Shu, Jian Yao, Shiqing Xin\",\"doi\":\"10.1109/TVCG.2025.3612379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Point cloud completion is a vital task focused on reconstructing complete point clouds and addressing the incompleteness caused by occlusion and limited sensor resolution. Traditional methods relying on fixed local region partitioning, such as k-nearest neighbors, which fail to account for the highly uneven distribution of geometric complexity across different regions of a shape. This limitation leads to inefficient representation and suboptimal reconstruction, especially in areas with fine-grained details or structural discontinuities. This paper proposes a point cloud completion framework called Degree-Flexible Point Graph Completion Network (DFG-PCN). It adaptively assigns node degrees using a detail-aware metric that combines feature variation and curvature, focusing on structurally important regions. We further introduce a geometry-aware graph integration module that uses Manhattan distance for edge aggregation and detail-guided fusion of local and global features to enhance representation. Extensive experiments on multiple benchmark datasets demonstrate that our method consistently outperforms state-of-the-art approaches.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3612379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3612379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

点云补全是一项重要的任务,重点是重建完整的点云,并解决由于遮挡和传感器分辨率有限而导致的不完整性问题。传统的方法依赖于固定的局部区域划分,如k近邻,这不能解释几何复杂性在形状的不同区域之间的高度不均匀分布。这种限制导致低效的表示和次优的重建,特别是在具有细粒度细节或结构不连续的区域。提出了一种称为度柔性点图补全网络(DFG-PCN)的点云补全框架。它使用结合特征变化和曲率的细节感知度量自适应地分配节点度,关注结构上重要的区域。我们进一步引入了一个几何感知的图形集成模块,该模块使用曼哈顿距离进行边缘聚合,并使用细节引导的局部和全局特征融合来增强表示。在多个基准数据集上进行的大量实验表明,我们的方法始终优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DFG-PCN: Point Cloud Completion with Degree-Flexible Point Graph.

Point cloud completion is a vital task focused on reconstructing complete point clouds and addressing the incompleteness caused by occlusion and limited sensor resolution. Traditional methods relying on fixed local region partitioning, such as k-nearest neighbors, which fail to account for the highly uneven distribution of geometric complexity across different regions of a shape. This limitation leads to inefficient representation and suboptimal reconstruction, especially in areas with fine-grained details or structural discontinuities. This paper proposes a point cloud completion framework called Degree-Flexible Point Graph Completion Network (DFG-PCN). It adaptively assigns node degrees using a detail-aware metric that combines feature variation and curvature, focusing on structurally important regions. We further introduce a geometry-aware graph integration module that uses Manhattan distance for edge aggregation and detail-guided fusion of local and global features to enhance representation. Extensive experiments on multiple benchmark datasets demonstrate that our method consistently outperforms state-of-the-art approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信