利用多序列MRI图像半监督缺血性脑卒中病灶分割的跨模态协作和差异。

Yuanxin Cao, Tian Qin, Yang Liu
{"title":"利用多序列MRI图像半监督缺血性脑卒中病灶分割的跨模态协作和差异。","authors":"Yuanxin Cao, Tian Qin, Yang Liu","doi":"10.1007/s10278-025-01691-4","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate ischemic stroke lesion segmentation is useful to define the optimal reperfusion treatment and unveil the stroke etiology. Despite the importance of diffusion-weighted MRI (DWI) for stroke diagnosis, learning from multi-sequence MRI images like apparent diffusion coefficient (ADC) can capitalize on the complementary nature of information from various modalities and show strong potential to improve the performance of segmentation. However, existing deep learning-based methods require large amounts of well-annotated data from multiple modalities for training, while acquiring such datasets is often impractical. We conduct the exploration of semi-supervised stroke lesion segmentation from multi-sequence MRI images by utilizing unlabeled data to improve performance using limited annotation and propose a novel framework by exploiting cross-modality collaboration and discrepancy to efficiently utilize unlabeled data. Specifically, we adopt a cross-modal bidirectional copy-paste strategy to enable information collaboration between different modalities and a cross-modal discrepancy-informed correction strategy to efficiently learn from limited labeled multi-sequence MRI data and abundant unlabeled data. Extensive experiments on the ischemic stroke lesion segmentation (ISLES 22) dataset demonstrate that our method efficiently utilizes unlabeled data with 12.32% DSC improvements compared with a supervised baseline using 10% annotations and outperforms existing semi-supervised segmentation methods with better performance.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Cross-modal Collaboration and Discrepancy for Semi-supervised Ischemic Stroke Lesion Segmentation from Multi-sequence MRI Images.\",\"authors\":\"Yuanxin Cao, Tian Qin, Yang Liu\",\"doi\":\"10.1007/s10278-025-01691-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate ischemic stroke lesion segmentation is useful to define the optimal reperfusion treatment and unveil the stroke etiology. Despite the importance of diffusion-weighted MRI (DWI) for stroke diagnosis, learning from multi-sequence MRI images like apparent diffusion coefficient (ADC) can capitalize on the complementary nature of information from various modalities and show strong potential to improve the performance of segmentation. However, existing deep learning-based methods require large amounts of well-annotated data from multiple modalities for training, while acquiring such datasets is often impractical. We conduct the exploration of semi-supervised stroke lesion segmentation from multi-sequence MRI images by utilizing unlabeled data to improve performance using limited annotation and propose a novel framework by exploiting cross-modality collaboration and discrepancy to efficiently utilize unlabeled data. Specifically, we adopt a cross-modal bidirectional copy-paste strategy to enable information collaboration between different modalities and a cross-modal discrepancy-informed correction strategy to efficiently learn from limited labeled multi-sequence MRI data and abundant unlabeled data. Extensive experiments on the ischemic stroke lesion segmentation (ISLES 22) dataset demonstrate that our method efficiently utilizes unlabeled data with 12.32% DSC improvements compared with a supervised baseline using 10% annotations and outperforms existing semi-supervised segmentation methods with better performance.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01691-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01691-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的缺血性脑卒中病灶分割有助于确定最佳再灌注治疗方案和揭示脑卒中病因。尽管弥散加权MRI (DWI)在脑卒中诊断中的重要性,但从多序列MRI图像中学习,如表观弥散系数(ADC),可以利用各种模式信息的互补性,并显示出提高分割性能的强大潜力。然而,现有的基于深度学习的方法需要来自多种模式的大量注释良好的数据进行训练,而获取这样的数据集通常是不切实际的。我们通过利用未标记数据对多序列MRI图像进行半监督脑卒中病变分割进行了探索,以提高使用有限注释的性能,并提出了一种利用跨模态协作和差异的新框架,以有效利用未标记数据。具体来说,我们采用了跨模态双向复制-粘贴策略来实现不同模态之间的信息协作,并采用了跨模态差异通知纠正策略来有效地从有限的标记多序列MRI数据和丰富的未标记数据中学习。在缺血性卒中病灶分割(ISLES 22)数据集上的大量实验表明,我们的方法有效地利用了未标记数据,与使用10%注释的监督基线相比,DSC提高了12.32%,并且优于现有的半监督分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Cross-modal Collaboration and Discrepancy for Semi-supervised Ischemic Stroke Lesion Segmentation from Multi-sequence MRI Images.

Accurate ischemic stroke lesion segmentation is useful to define the optimal reperfusion treatment and unveil the stroke etiology. Despite the importance of diffusion-weighted MRI (DWI) for stroke diagnosis, learning from multi-sequence MRI images like apparent diffusion coefficient (ADC) can capitalize on the complementary nature of information from various modalities and show strong potential to improve the performance of segmentation. However, existing deep learning-based methods require large amounts of well-annotated data from multiple modalities for training, while acquiring such datasets is often impractical. We conduct the exploration of semi-supervised stroke lesion segmentation from multi-sequence MRI images by utilizing unlabeled data to improve performance using limited annotation and propose a novel framework by exploiting cross-modality collaboration and discrepancy to efficiently utilize unlabeled data. Specifically, we adopt a cross-modal bidirectional copy-paste strategy to enable information collaboration between different modalities and a cross-modal discrepancy-informed correction strategy to efficiently learn from limited labeled multi-sequence MRI data and abundant unlabeled data. Extensive experiments on the ischemic stroke lesion segmentation (ISLES 22) dataset demonstrate that our method efficiently utilizes unlabeled data with 12.32% DSC improvements compared with a supervised baseline using 10% annotations and outperforms existing semi-supervised segmentation methods with better performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信