气体透选膜的光充电纳米孔。

IF 16.9
Arun Kumar Manna, Susmita Kundu, Komal Jindal, Dipak Maity, Suvendu Panda, Preeti Yadav, Girish Mishra, Sounak Chatterjee, Nivedita Sikdar, Jagannath Mondal, Soumya Ghosh, Tharangattu N Narayanan, Ritesh Haldar
{"title":"气体透选膜的光充电纳米孔。","authors":"Arun Kumar Manna, Susmita Kundu, Komal Jindal, Dipak Maity, Suvendu Panda, Preeti Yadav, Girish Mishra, Sounak Chatterjee, Nivedita Sikdar, Jagannath Mondal, Soumya Ghosh, Tharangattu N Narayanan, Ritesh Haldar","doi":"10.1002/anie.202513377","DOIUrl":null,"url":null,"abstract":"<p><p>Gas permselective membranes are inherently constrained by a trade-off between permeability and selectivity. Overcoming this limitation is key to enabling broader industrial adoption, and advanced porous materials-particularly metal-organic framework (MOF)-has emerged as promising candidate. Yet, to truly rival established separation technologies such as, distillation, pressure swing adsorption and chemisorption, innovative design strategies remain essential. Traditionally, efforts to surpass the trade-off have focused on regulating porosity, pore architecture, pore surface chemical functionality, and macroscopic transport pathways (particle morphology). These modifications are achieved either through bottom-up synthetic approaches or by employing external stimuli such as light, pressure, or electric fields. In this work, we introduce a photochargeable membrane that enhances gas permselectivity through precise, molecule-specific interactions-without altering the underlying porous architecture. This is achieved by incorporating a nanoporous MOF, constructed from redox-active organic ligands, as filler in a mixed matrix membrane. Upon photoexcitation, ligand-ligand charge separation yields stable pore surface charges, facilitating selective interactions with quadrupolar CO<sub>2</sub>. This specific interaction enhances CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> permselectivity, surpassing the Robeson upper bound. The proof-of-concept can be explored for mixed and high purity gas feed preparation.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202513377"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photochargeable Nanopores in Gas Permselective Membrane.\",\"authors\":\"Arun Kumar Manna, Susmita Kundu, Komal Jindal, Dipak Maity, Suvendu Panda, Preeti Yadav, Girish Mishra, Sounak Chatterjee, Nivedita Sikdar, Jagannath Mondal, Soumya Ghosh, Tharangattu N Narayanan, Ritesh Haldar\",\"doi\":\"10.1002/anie.202513377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gas permselective membranes are inherently constrained by a trade-off between permeability and selectivity. Overcoming this limitation is key to enabling broader industrial adoption, and advanced porous materials-particularly metal-organic framework (MOF)-has emerged as promising candidate. Yet, to truly rival established separation technologies such as, distillation, pressure swing adsorption and chemisorption, innovative design strategies remain essential. Traditionally, efforts to surpass the trade-off have focused on regulating porosity, pore architecture, pore surface chemical functionality, and macroscopic transport pathways (particle morphology). These modifications are achieved either through bottom-up synthetic approaches or by employing external stimuli such as light, pressure, or electric fields. In this work, we introduce a photochargeable membrane that enhances gas permselectivity through precise, molecule-specific interactions-without altering the underlying porous architecture. This is achieved by incorporating a nanoporous MOF, constructed from redox-active organic ligands, as filler in a mixed matrix membrane. Upon photoexcitation, ligand-ligand charge separation yields stable pore surface charges, facilitating selective interactions with quadrupolar CO<sub>2</sub>. This specific interaction enhances CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> permselectivity, surpassing the Robeson upper bound. The proof-of-concept can be explored for mixed and high purity gas feed preparation.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202513377\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202513377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202513377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气体透选膜本质上受到渗透性和选择性之间权衡的约束。克服这一限制是实现更广泛的工业应用的关键,而先进的多孔材料,特别是金属有机框架(MOF),已经成为有希望的候选材料。然而,要真正与现有的分离技术(如蒸馏、变压吸附和化学吸附)竞争,创新的设计策略仍然是必不可少的。传统上,超越取舍的努力集中在调节孔隙度、孔隙结构、孔隙表面化学功能和宏观运输途径(颗粒形态)上。这些修饰可以通过自下而上的合成方法或使用外部刺激(如光、压力或电场)来实现。在这项工作中,我们介绍了一种光充电膜,它通过精确的、分子特异性的相互作用来增强气体的透性选择性,而不会改变潜在的多孔结构。这是通过在混合基质膜中加入由氧化还原活性有机配体构成的纳米多孔MOF作为填料来实现的。在光激发下,配体-配体电荷分离产生稳定的孔表面电荷,促进与四极性CO2的选择性相互作用。这种特殊的相互作用增强了CO2/N2和CO2/CH4的选择性,超过了Robeson上界。可以探索混合和高纯度气体原料制备的概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photochargeable Nanopores in Gas Permselective Membrane.

Gas permselective membranes are inherently constrained by a trade-off between permeability and selectivity. Overcoming this limitation is key to enabling broader industrial adoption, and advanced porous materials-particularly metal-organic framework (MOF)-has emerged as promising candidate. Yet, to truly rival established separation technologies such as, distillation, pressure swing adsorption and chemisorption, innovative design strategies remain essential. Traditionally, efforts to surpass the trade-off have focused on regulating porosity, pore architecture, pore surface chemical functionality, and macroscopic transport pathways (particle morphology). These modifications are achieved either through bottom-up synthetic approaches or by employing external stimuli such as light, pressure, or electric fields. In this work, we introduce a photochargeable membrane that enhances gas permselectivity through precise, molecule-specific interactions-without altering the underlying porous architecture. This is achieved by incorporating a nanoporous MOF, constructed from redox-active organic ligands, as filler in a mixed matrix membrane. Upon photoexcitation, ligand-ligand charge separation yields stable pore surface charges, facilitating selective interactions with quadrupolar CO2. This specific interaction enhances CO2/N2 and CO2/CH4 permselectivity, surpassing the Robeson upper bound. The proof-of-concept can be explored for mixed and high purity gas feed preparation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信