利用线性视网膜变换和贝叶斯实验设计融合中央凹固定。

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Christopher K I Williams
{"title":"利用线性视网膜变换和贝叶斯实验设计融合中央凹固定。","authors":"Christopher K I Williams","doi":"10.1162/neco.a.33","DOIUrl":null,"url":null,"abstract":"<p><p>Humans (and many vertebrates) face the problem of fusing together multiple fixations of a scene in order to obtain a representation of the whole, where each fixation uses a high-resolution fovea and decreasing resolution in the periphery. In this letter, we explicitly represent the retinal transformation of a fixation as a linear downsampling of a high-resolution latent image of the scene, exploiting the known geometry. This linear transformation allows us to carry out exact inference for the latent variables in factor analysis (FA) and mixtures of FA models of the scene. This also allows us to formulate and solve the choice of where to look next as a Bayesian experimental design problem using the expected information gain criterion. Experiments on the Frey faces and MNIST data sets demonstrate the effectiveness of our models.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1-22"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusing Foveal Fixations Using Linear Retinal Transformations and Bayesian Experimental Design.\",\"authors\":\"Christopher K I Williams\",\"doi\":\"10.1162/neco.a.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Humans (and many vertebrates) face the problem of fusing together multiple fixations of a scene in order to obtain a representation of the whole, where each fixation uses a high-resolution fovea and decreasing resolution in the periphery. In this letter, we explicitly represent the retinal transformation of a fixation as a linear downsampling of a high-resolution latent image of the scene, exploiting the known geometry. This linear transformation allows us to carry out exact inference for the latent variables in factor analysis (FA) and mixtures of FA models of the scene. This also allows us to formulate and solve the choice of where to look next as a Bayesian experimental design problem using the expected information gain criterion. Experiments on the Frey faces and MNIST data sets demonstrate the effectiveness of our models.</p>\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\" \",\"pages\":\"1-22\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/neco.a.33\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco.a.33","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人类(和许多脊椎动物)面临着将一个场景的多个注视点融合在一起以获得整体表现的问题,其中每个注视点都使用高分辨率的中央凹和周围分辨率不断降低的中央凹。在这封信中,我们明确表示视网膜转换的固定作为一个线性下采样的高分辨率的潜在图像的场景,利用已知的几何形状。这种线性变换使我们能够对场景的因素分析(FA)和FA模型的混合中的潜在变量进行精确的推断。这也使我们能够使用预期信息增益准则制定和解决贝叶斯实验设计问题的下一步选择。在Frey人脸和MNIST数据集上的实验证明了我们模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusing Foveal Fixations Using Linear Retinal Transformations and Bayesian Experimental Design.

Humans (and many vertebrates) face the problem of fusing together multiple fixations of a scene in order to obtain a representation of the whole, where each fixation uses a high-resolution fovea and decreasing resolution in the periphery. In this letter, we explicitly represent the retinal transformation of a fixation as a linear downsampling of a high-resolution latent image of the scene, exploiting the known geometry. This linear transformation allows us to carry out exact inference for the latent variables in factor analysis (FA) and mixtures of FA models of the scene. This also allows us to formulate and solve the choice of where to look next as a Bayesian experimental design problem using the expected information gain criterion. Experiments on the Frey faces and MNIST data sets demonstrate the effectiveness of our models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信