利用时间1-形式从观测轨迹估计相位。

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Simon Wilshin, Matthew D Kvalheim, Clayton Scott, Shai Revzen
{"title":"利用时间1-形式从观测轨迹估计相位。","authors":"Simon Wilshin, Matthew D Kvalheim, Clayton Scott, Shai Revzen","doi":"10.1162/neco.a.32","DOIUrl":null,"url":null,"abstract":"<p><p>Oscillators are ubiquitous in nature and are usually associated with the existence of an asymptotic phase that governs the long-term dynamics of the oscillator. We show that the asymptotic phase can be estimated using a carefully chosen series expansion that directly computes the phase response curve (PRC) and provides an algorithm for estimating the coefficients of this series. Unlike previously available data-driven phase estimation methods, our algorithm can use observations that are much shorter than a cycle; has proven convergence rate bounds as a function of the properties of measurement noise and system noise; will recover phase within any forward invariant region for which sufficient data are available; recovers the PRCs that govern weak oscillator coupling; and recovers isochron curvature and recovers nonlinear features of isochron geometry. Our method may find application wherever models of oscillator dynamics need to be constructed from measured or simulated time-series.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1-47"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Phase From Observed Trajectories Using the Temporal 1-Form.\",\"authors\":\"Simon Wilshin, Matthew D Kvalheim, Clayton Scott, Shai Revzen\",\"doi\":\"10.1162/neco.a.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oscillators are ubiquitous in nature and are usually associated with the existence of an asymptotic phase that governs the long-term dynamics of the oscillator. We show that the asymptotic phase can be estimated using a carefully chosen series expansion that directly computes the phase response curve (PRC) and provides an algorithm for estimating the coefficients of this series. Unlike previously available data-driven phase estimation methods, our algorithm can use observations that are much shorter than a cycle; has proven convergence rate bounds as a function of the properties of measurement noise and system noise; will recover phase within any forward invariant region for which sufficient data are available; recovers the PRCs that govern weak oscillator coupling; and recovers isochron curvature and recovers nonlinear features of isochron geometry. Our method may find application wherever models of oscillator dynamics need to be constructed from measured or simulated time-series.</p>\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\" \",\"pages\":\"1-47\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/neco.a.32\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco.a.32","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

振子在自然界中无处不在,通常与控制振子长期动力学的渐近相的存在有关。我们证明了渐近相位可以使用精心选择的级数展开来估计,该级数展开直接计算相位响应曲线(PRC),并提供了估计该级数系数的算法。与以前可用的数据驱动相位估计方法不同,我们的算法可以使用比周期短得多的观测值;证明了收敛速率界是测量噪声和系统噪声特性的函数;在任何有足够数据的前向不变区域内恢复相位;恢复控制弱振荡器耦合的prc;恢复等时线曲率,恢复等时线几何的非线性特征。我们的方法可以在任何需要从测量或模拟时间序列构建振荡器动力学模型的地方找到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Phase From Observed Trajectories Using the Temporal 1-Form.

Oscillators are ubiquitous in nature and are usually associated with the existence of an asymptotic phase that governs the long-term dynamics of the oscillator. We show that the asymptotic phase can be estimated using a carefully chosen series expansion that directly computes the phase response curve (PRC) and provides an algorithm for estimating the coefficients of this series. Unlike previously available data-driven phase estimation methods, our algorithm can use observations that are much shorter than a cycle; has proven convergence rate bounds as a function of the properties of measurement noise and system noise; will recover phase within any forward invariant region for which sufficient data are available; recovers the PRCs that govern weak oscillator coupling; and recovers isochron curvature and recovers nonlinear features of isochron geometry. Our method may find application wherever models of oscillator dynamics need to be constructed from measured or simulated time-series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信