Jérôme Emonet, Selma Souihel, Frédéric Chavane, Alain Destexhe, Matteo di Volo, Bruno Cessac
{"title":"视网膜和初级视觉皮层运动预期的嵌合体模型。","authors":"Jérôme Emonet, Selma Souihel, Frédéric Chavane, Alain Destexhe, Matteo di Volo, Bruno Cessac","doi":"10.1162/neco.a.34","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a mean field model of the primary visual cortex (V1), connected to a realistic retina model, to study the impact of the retina on motion anticipation. We first consider the case where the retina does not itself provide anticipation-which is then only triggered by a cortical mechanism, the \"anticipation by latency\"-and unravel the effects of the retinal input amplitude, of stimulus features such as speed and contrast and of the size of cortical extensions and fiber conduction speed. Then we explore the changes in the cortical wave of anticipation when V1 is triggered by retina-driven anticipatory mechanisms: gain control and lateral inhibition by amacrine cells. Here, we show how retinal and cortical anticipation combine to provide an efficient processing where the simulated cortical response is in advance over the moving object that triggers this response, compensating the delays in visual processing.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1925-1974"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Chimera Model for Motion Anticipation in the Retina and the Primary Visual Cortex.\",\"authors\":\"Jérôme Emonet, Selma Souihel, Frédéric Chavane, Alain Destexhe, Matteo di Volo, Bruno Cessac\",\"doi\":\"10.1162/neco.a.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a mean field model of the primary visual cortex (V1), connected to a realistic retina model, to study the impact of the retina on motion anticipation. We first consider the case where the retina does not itself provide anticipation-which is then only triggered by a cortical mechanism, the \\\"anticipation by latency\\\"-and unravel the effects of the retinal input amplitude, of stimulus features such as speed and contrast and of the size of cortical extensions and fiber conduction speed. Then we explore the changes in the cortical wave of anticipation when V1 is triggered by retina-driven anticipatory mechanisms: gain control and lateral inhibition by amacrine cells. Here, we show how retinal and cortical anticipation combine to provide an efficient processing where the simulated cortical response is in advance over the moving object that triggers this response, compensating the delays in visual processing.</p>\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\" \",\"pages\":\"1925-1974\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/neco.a.34\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco.a.34","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Chimera Model for Motion Anticipation in the Retina and the Primary Visual Cortex.
We propose a mean field model of the primary visual cortex (V1), connected to a realistic retina model, to study the impact of the retina on motion anticipation. We first consider the case where the retina does not itself provide anticipation-which is then only triggered by a cortical mechanism, the "anticipation by latency"-and unravel the effects of the retinal input amplitude, of stimulus features such as speed and contrast and of the size of cortical extensions and fiber conduction speed. Then we explore the changes in the cortical wave of anticipation when V1 is triggered by retina-driven anticipatory mechanisms: gain control and lateral inhibition by amacrine cells. Here, we show how retinal and cortical anticipation combine to provide an efficient processing where the simulated cortical response is in advance over the moving object that triggers this response, compensating the delays in visual processing.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.