揭示KRAS G12D抑制:从分子动力学到治疗策略。

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bamidele Samson Omotara, Pruthvirajsinh Rajendrasinh Solanki, Amena Khatun Manica, Chinedum Favour Ajala, Idris Oladimeji Junaid, Lateef Owolabi Anifowose, Temilade Rukayat Adeniran, Favour Nwachukwu, Racheal Olatunmike Farayola, Ibrahim Tope Abdulrazaq, Mojeed Ayoola Ashiru, Abdul-Quddus Kehinde Oyedele
{"title":"揭示KRAS G12D抑制:从分子动力学到治疗策略。","authors":"Bamidele Samson Omotara, Pruthvirajsinh Rajendrasinh Solanki, Amena Khatun Manica, Chinedum Favour Ajala, Idris Oladimeji Junaid, Lateef Owolabi Anifowose, Temilade Rukayat Adeniran, Favour Nwachukwu, Racheal Olatunmike Farayola, Ibrahim Tope Abdulrazaq, Mojeed Ayoola Ashiru, Abdul-Quddus Kehinde Oyedele","doi":"10.1080/07391102.2025.2563084","DOIUrl":null,"url":null,"abstract":"<p><p>Addressing the KRAS G12D mutation, a common driver in various cancers, remains a formidable challenge in targeted therapy development. In our study, we performed an extensive molecular dynamics simulation totaling 12 μs across several protein-ligand complexes to uncover the most promising inhibitors against this mutation. Among experimental candidates, THZ835, MTRX1133 and THZ816-THZ835 stood out, exhibiting exceptional stability and binding energy within the KRAS G12D switch II pocket at an atomistic level. This robust performance established THZ835 as the pharmacophore model for our subsequent structure-based drug design. Furthermore, our virtual screening identified structurally similar compounds, notably CID_146527942 and CID_132145180, which demonstrated binding affinities comparable to THZ835. Intriguingly, our analysis suggests that the enhanced binding efficacy of CID_146527942 may be attributed to the formation of salt bridges with key residues such as Asp12 in KRAS G12D, adding a novel dimension to our understanding of stabilizing factors within the binding pocket, while THZ835's efficacy likely stems from other interactions. While THZ835 exhibited the highest binding affinity, the potential of CID_146527942 and CID_132145180 as alternative inhibitors highlights the importance of considering diverse interaction dynamics in drug efficacy. Overall, our study, leveraging a 12-μs MD simulation and detailed molecular interaction analysis, lays the groundwork for innovative therapeutic strategies targeting KRAS G12D-mutant cancers.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-24"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling KRAS G12D inhibition: from molecular dynamics to therapeutic strategies.\",\"authors\":\"Bamidele Samson Omotara, Pruthvirajsinh Rajendrasinh Solanki, Amena Khatun Manica, Chinedum Favour Ajala, Idris Oladimeji Junaid, Lateef Owolabi Anifowose, Temilade Rukayat Adeniran, Favour Nwachukwu, Racheal Olatunmike Farayola, Ibrahim Tope Abdulrazaq, Mojeed Ayoola Ashiru, Abdul-Quddus Kehinde Oyedele\",\"doi\":\"10.1080/07391102.2025.2563084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Addressing the KRAS G12D mutation, a common driver in various cancers, remains a formidable challenge in targeted therapy development. In our study, we performed an extensive molecular dynamics simulation totaling 12 μs across several protein-ligand complexes to uncover the most promising inhibitors against this mutation. Among experimental candidates, THZ835, MTRX1133 and THZ816-THZ835 stood out, exhibiting exceptional stability and binding energy within the KRAS G12D switch II pocket at an atomistic level. This robust performance established THZ835 as the pharmacophore model for our subsequent structure-based drug design. Furthermore, our virtual screening identified structurally similar compounds, notably CID_146527942 and CID_132145180, which demonstrated binding affinities comparable to THZ835. Intriguingly, our analysis suggests that the enhanced binding efficacy of CID_146527942 may be attributed to the formation of salt bridges with key residues such as Asp12 in KRAS G12D, adding a novel dimension to our understanding of stabilizing factors within the binding pocket, while THZ835's efficacy likely stems from other interactions. While THZ835 exhibited the highest binding affinity, the potential of CID_146527942 and CID_132145180 as alternative inhibitors highlights the importance of considering diverse interaction dynamics in drug efficacy. Overall, our study, leveraging a 12-μs MD simulation and detailed molecular interaction analysis, lays the groundwork for innovative therapeutic strategies targeting KRAS G12D-mutant cancers.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-24\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2025.2563084\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2563084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

KRAS G12D突变是多种癌症的共同驱动因素,在靶向治疗发展中仍然是一个巨大的挑战。在我们的研究中,我们进行了广泛的分子动力学模拟,在几个蛋白质配体复合物中总共12 μs,以发现最有希望抑制这种突变的抑制剂。在实验候选材料中,THZ835、MTRX1133和THZ816-THZ835脱颖而出,在KRAS G12D开关II口袋中表现出优异的原子水平稳定性和结合能。这一强大的性能使THZ835成为我们随后基于结构的药物设计的药效团模型。此外,我们的虚拟筛选鉴定了结构相似的化合物,特别是CID_146527942和CID_132145180,它们的结合亲和力与THZ835相当。有趣的是,我们的分析表明,CID_146527942的增强结合效能可能归因于与KRAS G12D中的关键残基(如Asp12)形成盐桥,这为我们了解结合口袋内的稳定因子增加了一个新的维度,而THZ835的功效可能源于其他相互作用。虽然THZ835表现出最高的结合亲和力,但CID_146527942和CID_132145180作为替代抑制剂的潜力突出了在药物疗效中考虑不同相互作用动力学的重要性。总的来说,我们的研究利用12 μs MD模拟和详细的分子相互作用分析,为针对KRAS g12d突变癌症的创新治疗策略奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling KRAS G12D inhibition: from molecular dynamics to therapeutic strategies.

Addressing the KRAS G12D mutation, a common driver in various cancers, remains a formidable challenge in targeted therapy development. In our study, we performed an extensive molecular dynamics simulation totaling 12 μs across several protein-ligand complexes to uncover the most promising inhibitors against this mutation. Among experimental candidates, THZ835, MTRX1133 and THZ816-THZ835 stood out, exhibiting exceptional stability and binding energy within the KRAS G12D switch II pocket at an atomistic level. This robust performance established THZ835 as the pharmacophore model for our subsequent structure-based drug design. Furthermore, our virtual screening identified structurally similar compounds, notably CID_146527942 and CID_132145180, which demonstrated binding affinities comparable to THZ835. Intriguingly, our analysis suggests that the enhanced binding efficacy of CID_146527942 may be attributed to the formation of salt bridges with key residues such as Asp12 in KRAS G12D, adding a novel dimension to our understanding of stabilizing factors within the binding pocket, while THZ835's efficacy likely stems from other interactions. While THZ835 exhibited the highest binding affinity, the potential of CID_146527942 and CID_132145180 as alternative inhibitors highlights the importance of considering diverse interaction dynamics in drug efficacy. Overall, our study, leveraging a 12-μs MD simulation and detailed molecular interaction analysis, lays the groundwork for innovative therapeutic strategies targeting KRAS G12D-mutant cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信