用GeneTuring对基因组知识的大型语言模型进行基准测试。

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xinyi Shang, Xu Liao, Zhicheng Ji, Wenpin Hou
{"title":"用GeneTuring对基因组知识的大型语言模型进行基准测试。","authors":"Xinyi Shang, Xu Liao, Zhicheng Ji, Wenpin Hou","doi":"10.1093/bib/bbaf492","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) show promise in biomedical research, but their effectiveness for genomic inquiry remains unclear. We developed GeneTuring, a benchmark consisting of 16 genomics tasks with 1600 curated questions, and manually evaluated 48 000 answers from 10 LLM configurations, including GPT-4o (via API, ChatGPT with web access, and a custom Generative Pretrained Transformer (GPT) setup), GPT-3.5, Claude 3.5, Gemini Advanced, GeneGPT (both slim and full), BioGPT, and BioMedLM. A custom GPT-4o configuration integrated with National Center for Biotechnology Information (NCBI) Application Programming Interfaces (APIs), developed in this study as SeqSnap, achieved the best overall performance. GPT-4o with web access and GeneGPT demonstrated complementary strengths. Our findings highlight both the promise and current limitations of LLMs in genomics, and emphasize the value of combining LLMs with domain-specific tools for robust genomic intelligence. GeneTuring offers a key resource for benchmarking and improving LLMs in biomedical research.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454257/pdf/","citationCount":"0","resultStr":"{\"title\":\"Benchmarking large language models for genomic knowledge with GeneTuring.\",\"authors\":\"Xinyi Shang, Xu Liao, Zhicheng Ji, Wenpin Hou\",\"doi\":\"10.1093/bib/bbaf492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large language models (LLMs) show promise in biomedical research, but their effectiveness for genomic inquiry remains unclear. We developed GeneTuring, a benchmark consisting of 16 genomics tasks with 1600 curated questions, and manually evaluated 48 000 answers from 10 LLM configurations, including GPT-4o (via API, ChatGPT with web access, and a custom Generative Pretrained Transformer (GPT) setup), GPT-3.5, Claude 3.5, Gemini Advanced, GeneGPT (both slim and full), BioGPT, and BioMedLM. A custom GPT-4o configuration integrated with National Center for Biotechnology Information (NCBI) Application Programming Interfaces (APIs), developed in this study as SeqSnap, achieved the best overall performance. GPT-4o with web access and GeneGPT demonstrated complementary strengths. Our findings highlight both the promise and current limitations of LLMs in genomics, and emphasize the value of combining LLMs with domain-specific tools for robust genomic intelligence. GeneTuring offers a key resource for benchmarking and improving LLMs in biomedical research.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf492\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf492","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)在生物医学研究中显示出前景,但它们在基因组研究中的有效性尚不清楚。我们开发了GeneTuring,这是一个由16个基因组学任务和1600个精心设计的问题组成的基准,并手动评估了来自10个LLM配置的48 000个答案,包括GPT- 40(通过API,带有web访问的ChatGPT,以及自定义生成预训练变形器(GPT)设置),GPT-3.5, Claude 3.5, Gemini Advanced, GeneGPT(包括slim和full), BioGPT和BioMedLM。本研究中开发的自定义gpt - 40配置与国家生物技术信息中心(NCBI)应用程序编程接口(api)集成为SeqSnap,获得了最佳的整体性能。具有网络访问功能的gpt - 40和GeneGPT显示出互补优势。我们的研究结果强调了llm在基因组学中的前景和当前的局限性,并强调了llm与特定领域工具相结合的价值,以获得强大的基因组智能。GeneTuring为生物医学研究中的法学硕士提供了基准测试和改进的关键资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking large language models for genomic knowledge with GeneTuring.

Large language models (LLMs) show promise in biomedical research, but their effectiveness for genomic inquiry remains unclear. We developed GeneTuring, a benchmark consisting of 16 genomics tasks with 1600 curated questions, and manually evaluated 48 000 answers from 10 LLM configurations, including GPT-4o (via API, ChatGPT with web access, and a custom Generative Pretrained Transformer (GPT) setup), GPT-3.5, Claude 3.5, Gemini Advanced, GeneGPT (both slim and full), BioGPT, and BioMedLM. A custom GPT-4o configuration integrated with National Center for Biotechnology Information (NCBI) Application Programming Interfaces (APIs), developed in this study as SeqSnap, achieved the best overall performance. GPT-4o with web access and GeneGPT demonstrated complementary strengths. Our findings highlight both the promise and current limitations of LLMs in genomics, and emphasize the value of combining LLMs with domain-specific tools for robust genomic intelligence. GeneTuring offers a key resource for benchmarking and improving LLMs in biomedical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信