Jessica L Romero, Jack H Ratliff, Christopher J Carlson, Daniel R Griffiths, Christopher S Miller, Annika C Mosier, Timberley M Roane
{"title":"在Lowry垃圾填埋场超级基金站点降解1,4-二恶烷的工作生物反应器的群落和功能稳定性。","authors":"Jessica L Romero, Jack H Ratliff, Christopher J Carlson, Daniel R Griffiths, Christopher S Miller, Annika C Mosier, Timberley M Roane","doi":"10.1128/aem.00574-25","DOIUrl":null,"url":null,"abstract":"<p><p>1,4-dioxane (dioxane) is an emerging contaminant that poses risks to human and environmental health. Bacterial dioxane degradation is increasingly being studied as a method to remove dioxane from contaminated water. However, there is a lack of studies on microbial community structures and functions within efficient, large-scale, biodegradation-based remediation technologies. The Lowry Landfill Superfund Site (Colorado, USA) uses an on-site, pump-and-treat facility to remove dioxane from contaminated groundwater by biodegradation. Here, 16S rRNA gene and shotgun metagenomic sequencing were used to describe microbial community composition, soluble di-iron monooxygenase (SDIMO) alpha hydroxylases, and potential for dioxane degradation and horizontal gene transfer in bioreactor support media from the facility. Support media showed diverse microbial communities dominated by Nitrospiraceae, Nitrososphaeraceae, and Nitrosomonadaceae. <i>Pseudonocardia</i> was also detected, suggesting a potential presence of known dioxane-degraders. Candidate SDIMOs belonged mostly to Group V, followed by Groups IV, II, and I (based on read depth). The most abundant Group V clade contained 38 proteins that were phylogenetically related to DxmA-like proteins, including that of <i>Pseudonocardia dioxanivorans</i> CB1190 (a known dioxane degrader). Seventeen Lowry contigs containing DxmA-like proteins contained protein-coding genes potentially involved in chemical degradation, transcriptional regulation, and chemical transport. Interestingly, these contigs also included evidence of potential horizontal gene transfer, including toxin-antitoxin proteins, phage integrase proteins, putative transposases, and putative miniature inverted-repeat transposable elements. These findings improve our understanding of potential dioxane biodegradation mechanisms in a functioning remediation system. Further studies are needed to definitively confirm microbial activity and enzymatic activity toward dioxane removal in this site.</p><p><strong>Importance: </strong>As an environmental contaminant, 1,4-dioxane poses risks for water quality and human health. Used as a solvent and chemical stabilizer in a variety of manufacturing and industrial applications, microbiological methods of detoxification and mitigation are of interest. The degradation of 1,4-dioxane by the bacterium <i>Pseudonocardia</i> spp. is the best understood example; however, these studies are largely based on single isolate, bench-scale, or <i>in silico</i> experiments. Consequently, a knowledge gap exists on bacterial degradation of 1,4-dioxane at environmentally relevant concentrations using functioning remediation technologies at scale. This study addresses this gap directly by describing microbial taxa, enzymes, and potential horizontal gene transfer mechanisms associated with an active treatment plant located on a 1,4-dioxane-impacted U.S. Environmental Protection Agency (EPA) superfund site. As 1,4-dioxane contamination gains more attention, these findings may prove useful for future facilities aiming to promote and optimize removal by biodegradation.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0057425"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Community and functional stability in a working bioreactor degrading 1,4-dioxane at the Lowry Landfill Superfund Site.\",\"authors\":\"Jessica L Romero, Jack H Ratliff, Christopher J Carlson, Daniel R Griffiths, Christopher S Miller, Annika C Mosier, Timberley M Roane\",\"doi\":\"10.1128/aem.00574-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1,4-dioxane (dioxane) is an emerging contaminant that poses risks to human and environmental health. Bacterial dioxane degradation is increasingly being studied as a method to remove dioxane from contaminated water. However, there is a lack of studies on microbial community structures and functions within efficient, large-scale, biodegradation-based remediation technologies. The Lowry Landfill Superfund Site (Colorado, USA) uses an on-site, pump-and-treat facility to remove dioxane from contaminated groundwater by biodegradation. Here, 16S rRNA gene and shotgun metagenomic sequencing were used to describe microbial community composition, soluble di-iron monooxygenase (SDIMO) alpha hydroxylases, and potential for dioxane degradation and horizontal gene transfer in bioreactor support media from the facility. Support media showed diverse microbial communities dominated by Nitrospiraceae, Nitrososphaeraceae, and Nitrosomonadaceae. <i>Pseudonocardia</i> was also detected, suggesting a potential presence of known dioxane-degraders. Candidate SDIMOs belonged mostly to Group V, followed by Groups IV, II, and I (based on read depth). The most abundant Group V clade contained 38 proteins that were phylogenetically related to DxmA-like proteins, including that of <i>Pseudonocardia dioxanivorans</i> CB1190 (a known dioxane degrader). Seventeen Lowry contigs containing DxmA-like proteins contained protein-coding genes potentially involved in chemical degradation, transcriptional regulation, and chemical transport. Interestingly, these contigs also included evidence of potential horizontal gene transfer, including toxin-antitoxin proteins, phage integrase proteins, putative transposases, and putative miniature inverted-repeat transposable elements. These findings improve our understanding of potential dioxane biodegradation mechanisms in a functioning remediation system. Further studies are needed to definitively confirm microbial activity and enzymatic activity toward dioxane removal in this site.</p><p><strong>Importance: </strong>As an environmental contaminant, 1,4-dioxane poses risks for water quality and human health. Used as a solvent and chemical stabilizer in a variety of manufacturing and industrial applications, microbiological methods of detoxification and mitigation are of interest. The degradation of 1,4-dioxane by the bacterium <i>Pseudonocardia</i> spp. is the best understood example; however, these studies are largely based on single isolate, bench-scale, or <i>in silico</i> experiments. Consequently, a knowledge gap exists on bacterial degradation of 1,4-dioxane at environmentally relevant concentrations using functioning remediation technologies at scale. This study addresses this gap directly by describing microbial taxa, enzymes, and potential horizontal gene transfer mechanisms associated with an active treatment plant located on a 1,4-dioxane-impacted U.S. Environmental Protection Agency (EPA) superfund site. As 1,4-dioxane contamination gains more attention, these findings may prove useful for future facilities aiming to promote and optimize removal by biodegradation.</p>\",\"PeriodicalId\":8002,\"journal\":{\"name\":\"Applied and Environmental Microbiology\",\"volume\":\" \",\"pages\":\"e0057425\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Environmental Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/aem.00574-25\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.00574-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Community and functional stability in a working bioreactor degrading 1,4-dioxane at the Lowry Landfill Superfund Site.
1,4-dioxane (dioxane) is an emerging contaminant that poses risks to human and environmental health. Bacterial dioxane degradation is increasingly being studied as a method to remove dioxane from contaminated water. However, there is a lack of studies on microbial community structures and functions within efficient, large-scale, biodegradation-based remediation technologies. The Lowry Landfill Superfund Site (Colorado, USA) uses an on-site, pump-and-treat facility to remove dioxane from contaminated groundwater by biodegradation. Here, 16S rRNA gene and shotgun metagenomic sequencing were used to describe microbial community composition, soluble di-iron monooxygenase (SDIMO) alpha hydroxylases, and potential for dioxane degradation and horizontal gene transfer in bioreactor support media from the facility. Support media showed diverse microbial communities dominated by Nitrospiraceae, Nitrososphaeraceae, and Nitrosomonadaceae. Pseudonocardia was also detected, suggesting a potential presence of known dioxane-degraders. Candidate SDIMOs belonged mostly to Group V, followed by Groups IV, II, and I (based on read depth). The most abundant Group V clade contained 38 proteins that were phylogenetically related to DxmA-like proteins, including that of Pseudonocardia dioxanivorans CB1190 (a known dioxane degrader). Seventeen Lowry contigs containing DxmA-like proteins contained protein-coding genes potentially involved in chemical degradation, transcriptional regulation, and chemical transport. Interestingly, these contigs also included evidence of potential horizontal gene transfer, including toxin-antitoxin proteins, phage integrase proteins, putative transposases, and putative miniature inverted-repeat transposable elements. These findings improve our understanding of potential dioxane biodegradation mechanisms in a functioning remediation system. Further studies are needed to definitively confirm microbial activity and enzymatic activity toward dioxane removal in this site.
Importance: As an environmental contaminant, 1,4-dioxane poses risks for water quality and human health. Used as a solvent and chemical stabilizer in a variety of manufacturing and industrial applications, microbiological methods of detoxification and mitigation are of interest. The degradation of 1,4-dioxane by the bacterium Pseudonocardia spp. is the best understood example; however, these studies are largely based on single isolate, bench-scale, or in silico experiments. Consequently, a knowledge gap exists on bacterial degradation of 1,4-dioxane at environmentally relevant concentrations using functioning remediation technologies at scale. This study addresses this gap directly by describing microbial taxa, enzymes, and potential horizontal gene transfer mechanisms associated with an active treatment plant located on a 1,4-dioxane-impacted U.S. Environmental Protection Agency (EPA) superfund site. As 1,4-dioxane contamination gains more attention, these findings may prove useful for future facilities aiming to promote and optimize removal by biodegradation.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.