吡洛酮胺的综合光谱和计算研究及其与选定蛋白靶点的相互作用

IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Tadeusz W. Inglot
{"title":"吡洛酮胺的综合光谱和计算研究及其与选定蛋白靶点的相互作用","authors":"Tadeusz W. Inglot","doi":"10.1007/s11224-025-02558-8","DOIUrl":null,"url":null,"abstract":"<div><p>Piroctone olamine, an antifungal agent used in anti-dandruff cosmetics, was studied to characterize its structure and physicochemical properties, along with its complex with 2-amino-1-ethanol. Using DFT methods, geometry optimization and calculations of thermodynamic, electronic, and reactivity parameters were performed. Spectroscopic techniques (FTIR, Raman, UV–Vis, and spectrofluorimetry) supported experimental data interpretation. Molecular docking and dynamics simulations revealed stable piroctone-protein interactions, indicating potential pharmacological relevance beyond antifungal activity. This research enhances understanding of 1-hydroxy-2-pyridinone derivatives and their broader therapeutic potential.</p></div>","PeriodicalId":780,"journal":{"name":"Structural Chemistry","volume":"36 5","pages":"1667 - 1692"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11224-025-02558-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrated spectroscopic and computational study of piroctone olamine and its interactions with selected protein targets\",\"authors\":\"Tadeusz W. Inglot\",\"doi\":\"10.1007/s11224-025-02558-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Piroctone olamine, an antifungal agent used in anti-dandruff cosmetics, was studied to characterize its structure and physicochemical properties, along with its complex with 2-amino-1-ethanol. Using DFT methods, geometry optimization and calculations of thermodynamic, electronic, and reactivity parameters were performed. Spectroscopic techniques (FTIR, Raman, UV–Vis, and spectrofluorimetry) supported experimental data interpretation. Molecular docking and dynamics simulations revealed stable piroctone-protein interactions, indicating potential pharmacological relevance beyond antifungal activity. This research enhances understanding of 1-hydroxy-2-pyridinone derivatives and their broader therapeutic potential.</p></div>\",\"PeriodicalId\":780,\"journal\":{\"name\":\"Structural Chemistry\",\"volume\":\"36 5\",\"pages\":\"1667 - 1692\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11224-025-02558-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11224-025-02558-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11224-025-02558-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了用于去屑化妆品的抗真菌剂吡洛酮胺及其与2-氨基-1-乙醇配合物的结构和理化性质。利用DFT方法,进行了几何优化和热力学、电子和反应性参数的计算。光谱技术(FTIR,拉曼,UV-Vis和荧光光谱法)支持实验数据解释。分子对接和动力学模拟显示稳定的吡洛酮-蛋白质相互作用,表明潜在的药理学相关性超出抗真菌活性。本研究提高了对1-羟基-2-吡啶酮衍生物及其广泛治疗潜力的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated spectroscopic and computational study of piroctone olamine and its interactions with selected protein targets

Piroctone olamine, an antifungal agent used in anti-dandruff cosmetics, was studied to characterize its structure and physicochemical properties, along with its complex with 2-amino-1-ethanol. Using DFT methods, geometry optimization and calculations of thermodynamic, electronic, and reactivity parameters were performed. Spectroscopic techniques (FTIR, Raman, UV–Vis, and spectrofluorimetry) supported experimental data interpretation. Molecular docking and dynamics simulations revealed stable piroctone-protein interactions, indicating potential pharmacological relevance beyond antifungal activity. This research enhances understanding of 1-hydroxy-2-pyridinone derivatives and their broader therapeutic potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Chemistry
Structural Chemistry 化学-化学综合
CiteScore
3.80
自引率
11.80%
发文量
227
审稿时长
3.7 months
期刊介绍: Structural Chemistry is an international forum for the publication of peer-reviewed original research papers that cover the condensed and gaseous states of matter and involve numerous techniques for the determination of structure and energetics, their results, and the conclusions derived from these studies. The journal overcomes the unnatural separation in the current literature among the areas of structure determination, energetics, and applications, as well as builds a bridge to other chemical disciplines. Ist comprehensive coverage encompasses broad discussion of results, observation of relationships among various properties, and the description and application of structure and energy information in all domains of chemistry. We welcome the broadest range of accounts of research in structural chemistry involving the discussion of methodologies and structures,experimental, theoretical, and computational, and their combinations. We encourage discussions of structural information collected for their chemicaland biological significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信