{"title":"关于多边形域拉普拉斯变换定理的注解","authors":"Jens Markus Melenk, Claudio Rojik","doi":"10.21136/AM.2024.0049-24","DOIUrl":null,"url":null,"abstract":"<div><p>We present a shift theorem for solutions of the Poisson equation in a finite planar cone (and hence also on plane polygons) for Dirichlet, Neumann, and mixed boundary conditions. The range in which the shift theorem holds depends on the angle of the cone. For the right endpoint of the range, the shift theorem is described in terms of Besov spaces rather than Sobolev spaces.</p></div>","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"69 5","pages":"653 - 693"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.21136/AM.2024.0049-24.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on the shift theorem for the Laplacian in polygonal domains\",\"authors\":\"Jens Markus Melenk, Claudio Rojik\",\"doi\":\"10.21136/AM.2024.0049-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a shift theorem for solutions of the Poisson equation in a finite planar cone (and hence also on plane polygons) for Dirichlet, Neumann, and mixed boundary conditions. The range in which the shift theorem holds depends on the angle of the cone. For the right endpoint of the range, the shift theorem is described in terms of Besov spaces rather than Sobolev spaces.</p></div>\",\"PeriodicalId\":55505,\"journal\":{\"name\":\"Applications of Mathematics\",\"volume\":\"69 5\",\"pages\":\"653 - 693\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.21136/AM.2024.0049-24.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2024.0049-24\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2024.0049-24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A note on the shift theorem for the Laplacian in polygonal domains
We present a shift theorem for solutions of the Poisson equation in a finite planar cone (and hence also on plane polygons) for Dirichlet, Neumann, and mixed boundary conditions. The range in which the shift theorem holds depends on the angle of the cone. For the right endpoint of the range, the shift theorem is described in terms of Besov spaces rather than Sobolev spaces.
期刊介绍:
Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering.
The main topics covered include:
- Mechanics of Solids;
- Fluid Mechanics;
- Electrical Engineering;
- Solutions of Differential and Integral Equations;
- Mathematical Physics;
- Optimization;
- Probability
Mathematical Statistics.
The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.