利用臭氧从酸性矿山废水中绿色化学沉淀锰、钴和镍:机理和化学动力学

IF 3.1 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Younes Shekarian, Mohammad Rezaee and Sarma Pisupati
{"title":"利用臭氧从酸性矿山废水中绿色化学沉淀锰、钴和镍:机理和化学动力学","authors":"Younes Shekarian, Mohammad Rezaee and Sarma Pisupati","doi":"10.1039/D5RE00222B","DOIUrl":null,"url":null,"abstract":"<p >Manganese (Mn), cobalt (Co), and nickel (Ni) are designated as critical elements by the U.S. Department of the Interior. Acid mine drainage (AMD) is a viable secondary source for these metals. Conventional AMD treatment processes necessitate high pH levels (∼pH 9) or costly oxidants to recover these elements. Building upon prior work, this study utilizes an ozone oxidative precipitation method, currently patent-pending, to reduce chemical use and recover Mn, Co, and Ni from AMD. Saturation index calculations and Pourbaix diagram analyses demonstrated that ozone could recover these elements across a broad pH range (2–8). The effects of process parameters, particularly gas flow rate, stirring rate, and temperature, on the precipitation of these elements from AMD were investigated. It was found that the recovery of Mn–Co–Ni is enhanced when there is an increase in these parameters to a certain level, below which no statistically significant differences were observed. Additionally, a kinetic study on the oxidative precipitation of Mn–Co–Ni was conducted employing the pseudo-homogeneous model, and the activation energies were calculated. The effect of the process parameters, along with the calculated activation energy values (<em>E</em><small><sub>a(Mn)</sub></small> = −13.9 kJ mol<small><sup>−1</sup></small>; <em>E</em><small><sub>a(Co)</sub></small> = 16.3 kJ mol<small><sup>−1</sup></small>; <em>E</em><small><sub>a(Ni)</sub></small> = 14.5 kJ mol<small><sup>−1</sup></small>), collectively suggests that the ozone oxidative precipitation process of Mn–Co–Ni is diffusion-controlled.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2398-2411"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d5re00222b?page=search","citationCount":"0","resultStr":"{\"title\":\"Green chemical precipitation of manganese, cobalt, and nickel from acid mine drainage using ozone: mechanism and chemical kinetics\",\"authors\":\"Younes Shekarian, Mohammad Rezaee and Sarma Pisupati\",\"doi\":\"10.1039/D5RE00222B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Manganese (Mn), cobalt (Co), and nickel (Ni) are designated as critical elements by the U.S. Department of the Interior. Acid mine drainage (AMD) is a viable secondary source for these metals. Conventional AMD treatment processes necessitate high pH levels (∼pH 9) or costly oxidants to recover these elements. Building upon prior work, this study utilizes an ozone oxidative precipitation method, currently patent-pending, to reduce chemical use and recover Mn, Co, and Ni from AMD. Saturation index calculations and Pourbaix diagram analyses demonstrated that ozone could recover these elements across a broad pH range (2–8). The effects of process parameters, particularly gas flow rate, stirring rate, and temperature, on the precipitation of these elements from AMD were investigated. It was found that the recovery of Mn–Co–Ni is enhanced when there is an increase in these parameters to a certain level, below which no statistically significant differences were observed. Additionally, a kinetic study on the oxidative precipitation of Mn–Co–Ni was conducted employing the pseudo-homogeneous model, and the activation energies were calculated. The effect of the process parameters, along with the calculated activation energy values (<em>E</em><small><sub>a(Mn)</sub></small> = −13.9 kJ mol<small><sup>−1</sup></small>; <em>E</em><small><sub>a(Co)</sub></small> = 16.3 kJ mol<small><sup>−1</sup></small>; <em>E</em><small><sub>a(Ni)</sub></small> = 14.5 kJ mol<small><sup>−1</sup></small>), collectively suggests that the ozone oxidative precipitation process of Mn–Co–Ni is diffusion-controlled.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 10\",\"pages\":\" 2398-2411\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/re/d5re00222b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00222b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00222b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锰(Mn)、钴(Co)和镍(Ni)被美国内政部指定为关键元素。酸性矿井水(AMD)是这些金属可行的二次来源。传统的AMD处理工艺需要高pH值(~ pH 9)或昂贵的氧化剂来回收这些元素。在先前工作的基础上,本研究利用臭氧氧化沉淀法(目前正在申请专利)减少化学使用并从AMD中回收Mn, Co和Ni。饱和指数计算和Pourbaix图分析表明,臭氧可以在很宽的pH范围内(2-8)恢复这些元素。考察了工艺参数,特别是气体流速、搅拌速率和温度对这些元素从AMD中析出的影响。结果发现,当这些参数增加到一定水平时,Mn-Co-Ni的回收率提高,低于一定水平时,差异无统计学意义。此外,采用拟均匀模型对Mn-Co-Ni的氧化沉淀进行了动力学研究,并计算了活化能。计算得到的活化能值(Ea(Mn) =−13.9 kJ mol−1;Ea(Co) = 16.3 kJ mol−1;Ea(Ni) = 14.5 kJ mol−1),表明Mn-Co-Ni的臭氧氧化沉淀过程是扩散控制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Green chemical precipitation of manganese, cobalt, and nickel from acid mine drainage using ozone: mechanism and chemical kinetics

Green chemical precipitation of manganese, cobalt, and nickel from acid mine drainage using ozone: mechanism and chemical kinetics

Manganese (Mn), cobalt (Co), and nickel (Ni) are designated as critical elements by the U.S. Department of the Interior. Acid mine drainage (AMD) is a viable secondary source for these metals. Conventional AMD treatment processes necessitate high pH levels (∼pH 9) or costly oxidants to recover these elements. Building upon prior work, this study utilizes an ozone oxidative precipitation method, currently patent-pending, to reduce chemical use and recover Mn, Co, and Ni from AMD. Saturation index calculations and Pourbaix diagram analyses demonstrated that ozone could recover these elements across a broad pH range (2–8). The effects of process parameters, particularly gas flow rate, stirring rate, and temperature, on the precipitation of these elements from AMD were investigated. It was found that the recovery of Mn–Co–Ni is enhanced when there is an increase in these parameters to a certain level, below which no statistically significant differences were observed. Additionally, a kinetic study on the oxidative precipitation of Mn–Co–Ni was conducted employing the pseudo-homogeneous model, and the activation energies were calculated. The effect of the process parameters, along with the calculated activation energy values (Ea(Mn) = −13.9 kJ mol−1; Ea(Co) = 16.3 kJ mol−1; Ea(Ni) = 14.5 kJ mol−1), collectively suggests that the ozone oxidative precipitation process of Mn–Co–Ni is diffusion-controlled.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信