Sandra Liz Simon, Nitin Kaistha and Vishal Agarwal
{"title":"加速松弛引擎优化到最小能量路径†","authors":"Sandra Liz Simon, Nitin Kaistha and Vishal Agarwal","doi":"10.1039/D5RE00180C","DOIUrl":null,"url":null,"abstract":"<p >In the last few decades, several novel algorithms have been designed for finding critical points on a potential energy surface (PES) and the minimum energy paths connecting them. This has led to a considerable improvement in our understanding of reaction mechanisms and the kinetics of the underlying processes. These methods implicitly rely on computation of energy and forces on the PES, which are usually obtained <em>via</em> computationally demanding wave-function- or density-function-based <em>ab initio</em> methods. To mitigate the computational cost, efficient optimization algorithms are needed. Herein, we present two new first-order optimization algorithms: the adaptively accelerated relaxation engine (AARE), an enhanced molecular dynamics (MD) scheme, and the accelerated conjugate-gradient (Acc-CG) method, an improved version of the traditional conjugate gradient (CG) algorithm. We show the efficacy of these algorithms for unconstrained optimization on 2-dimensional and 4-dimensional test functions. Additionally, we also show the efficacy of these algorithms for optimizing an elastic band of images to the minimum energy path on 2-dimensional analytical potentials, heptamer island transitions, the HCN/CNH isomerization reaction, and the keto–enol tautomerization reaction.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2285-2299"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated relaxation engines for optimizing to a minimum energy path†\",\"authors\":\"Sandra Liz Simon, Nitin Kaistha and Vishal Agarwal\",\"doi\":\"10.1039/D5RE00180C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the last few decades, several novel algorithms have been designed for finding critical points on a potential energy surface (PES) and the minimum energy paths connecting them. This has led to a considerable improvement in our understanding of reaction mechanisms and the kinetics of the underlying processes. These methods implicitly rely on computation of energy and forces on the PES, which are usually obtained <em>via</em> computationally demanding wave-function- or density-function-based <em>ab initio</em> methods. To mitigate the computational cost, efficient optimization algorithms are needed. Herein, we present two new first-order optimization algorithms: the adaptively accelerated relaxation engine (AARE), an enhanced molecular dynamics (MD) scheme, and the accelerated conjugate-gradient (Acc-CG) method, an improved version of the traditional conjugate gradient (CG) algorithm. We show the efficacy of these algorithms for unconstrained optimization on 2-dimensional and 4-dimensional test functions. Additionally, we also show the efficacy of these algorithms for optimizing an elastic band of images to the minimum energy path on 2-dimensional analytical potentials, heptamer island transitions, the HCN/CNH isomerization reaction, and the keto–enol tautomerization reaction.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 10\",\"pages\":\" 2285-2299\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00180c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00180c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerated relaxation engines for optimizing to a minimum energy path†
In the last few decades, several novel algorithms have been designed for finding critical points on a potential energy surface (PES) and the minimum energy paths connecting them. This has led to a considerable improvement in our understanding of reaction mechanisms and the kinetics of the underlying processes. These methods implicitly rely on computation of energy and forces on the PES, which are usually obtained via computationally demanding wave-function- or density-function-based ab initio methods. To mitigate the computational cost, efficient optimization algorithms are needed. Herein, we present two new first-order optimization algorithms: the adaptively accelerated relaxation engine (AARE), an enhanced molecular dynamics (MD) scheme, and the accelerated conjugate-gradient (Acc-CG) method, an improved version of the traditional conjugate gradient (CG) algorithm. We show the efficacy of these algorithms for unconstrained optimization on 2-dimensional and 4-dimensional test functions. Additionally, we also show the efficacy of these algorithms for optimizing an elastic band of images to the minimum energy path on 2-dimensional analytical potentials, heptamer island transitions, the HCN/CNH isomerization reaction, and the keto–enol tautomerization reaction.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.