Daniel A. Holland-Moritz, Sarah R. Moor, Joseph B. Parry, Elliot J. Medcalf, Claire M. Eberle, Andrew C. Strakham, Shane T. Grosser, Hang Hu, Noah P. Dunham and Maximilian Gantz
{"title":"通过机器人自动真空直接注入质谱(RAVE MS)加速跨模态反应优化","authors":"Daniel A. Holland-Moritz, Sarah R. Moor, Joseph B. Parry, Elliot J. Medcalf, Claire M. Eberle, Andrew C. Strakham, Shane T. Grosser, Hang Hu, Noah P. Dunham and Maximilian Gantz","doi":"10.1039/D5RE00248F","DOIUrl":null,"url":null,"abstract":"<p >In this report, we detail direct inject mass spectrometry <em>via</em> a robotically automated vacuum enabled (RAVE) interface that utilizes commercially available capillary electrophoresis hardware to directly inject samples for mass spectrometry (MS) at a sampling rate of approximately 12 s per sample. This system enables direct electrospray ionization from standard 48, 96 or 384-well plates with minimal investment in hardware and utlilizes custom developed open source software that provides both autosampler control and analysis of raw extracted data from the mass spectrometer. We show a high level of correlation among results obtained with RAVE coupled MS, acoustic ejection (Echo) MS, and liquid chromatography coupled MS (LCMS) on 384 biocatalytically driven reactions. We additionally utilize RAVE MS on an array of 96 chemocatalytic reaction conditions to show that, while direct MS analysis can be challenging in complex mixtures, simple dilution followed by direct injection is often sufficient for analysis. With these results, we demonstrate the potential for RAVE MS to be utilized as a low-cost, low barrier to entry tool for rapid direct-inject MS analysis.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2243-2251"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating cross-modality reaction optimization via robotically automated vacuum enabled direct-inject mass spectrometry (RAVE MS)\",\"authors\":\"Daniel A. Holland-Moritz, Sarah R. Moor, Joseph B. Parry, Elliot J. Medcalf, Claire M. Eberle, Andrew C. Strakham, Shane T. Grosser, Hang Hu, Noah P. Dunham and Maximilian Gantz\",\"doi\":\"10.1039/D5RE00248F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this report, we detail direct inject mass spectrometry <em>via</em> a robotically automated vacuum enabled (RAVE) interface that utilizes commercially available capillary electrophoresis hardware to directly inject samples for mass spectrometry (MS) at a sampling rate of approximately 12 s per sample. This system enables direct electrospray ionization from standard 48, 96 or 384-well plates with minimal investment in hardware and utlilizes custom developed open source software that provides both autosampler control and analysis of raw extracted data from the mass spectrometer. We show a high level of correlation among results obtained with RAVE coupled MS, acoustic ejection (Echo) MS, and liquid chromatography coupled MS (LCMS) on 384 biocatalytically driven reactions. We additionally utilize RAVE MS on an array of 96 chemocatalytic reaction conditions to show that, while direct MS analysis can be challenging in complex mixtures, simple dilution followed by direct injection is often sufficient for analysis. With these results, we demonstrate the potential for RAVE MS to be utilized as a low-cost, low barrier to entry tool for rapid direct-inject MS analysis.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 10\",\"pages\":\" 2243-2251\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00248f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00248f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerating cross-modality reaction optimization via robotically automated vacuum enabled direct-inject mass spectrometry (RAVE MS)
In this report, we detail direct inject mass spectrometry via a robotically automated vacuum enabled (RAVE) interface that utilizes commercially available capillary electrophoresis hardware to directly inject samples for mass spectrometry (MS) at a sampling rate of approximately 12 s per sample. This system enables direct electrospray ionization from standard 48, 96 or 384-well plates with minimal investment in hardware and utlilizes custom developed open source software that provides both autosampler control and analysis of raw extracted data from the mass spectrometer. We show a high level of correlation among results obtained with RAVE coupled MS, acoustic ejection (Echo) MS, and liquid chromatography coupled MS (LCMS) on 384 biocatalytically driven reactions. We additionally utilize RAVE MS on an array of 96 chemocatalytic reaction conditions to show that, while direct MS analysis can be challenging in complex mixtures, simple dilution followed by direct injection is often sufficient for analysis. With these results, we demonstrate the potential for RAVE MS to be utilized as a low-cost, low barrier to entry tool for rapid direct-inject MS analysis.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.