{"title":"线性系统的数据驱动最小-最大MPC:鲁棒性和适应性","authors":"Yifan Xie, Julian Berberich, Frank Allgöwer","doi":"10.1016/j.automatica.2025.112612","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven controllers design is an important research problem, in particular when data is corrupted by the noise. In this paper, we propose a data-driven min–max model predictive control (MPC) scheme using noisy input-state data for unknown linear time-invariant (LTI) system. The unknown system matrices are characterized by a set-membership representation using the noisy input-state data. Leveraging this representation, we derive an upper bound on the worst-case cost and determine the corresponding optimal state-feedback control law through a semidefinite program (SDP). We prove that the resulting closed-loop system is robustly stabilized and satisfies the input and state constraints. Further, we propose an adaptive data-driven min–max MPC scheme which exploits additional online input-state data to improve closed-loop performance. Numerical examples show the effectiveness of the proposed methods.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"183 ","pages":"Article 112612"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven min–max MPC for linear systems: Robustness and adaptation\",\"authors\":\"Yifan Xie, Julian Berberich, Frank Allgöwer\",\"doi\":\"10.1016/j.automatica.2025.112612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Data-driven controllers design is an important research problem, in particular when data is corrupted by the noise. In this paper, we propose a data-driven min–max model predictive control (MPC) scheme using noisy input-state data for unknown linear time-invariant (LTI) system. The unknown system matrices are characterized by a set-membership representation using the noisy input-state data. Leveraging this representation, we derive an upper bound on the worst-case cost and determine the corresponding optimal state-feedback control law through a semidefinite program (SDP). We prove that the resulting closed-loop system is robustly stabilized and satisfies the input and state constraints. Further, we propose an adaptive data-driven min–max MPC scheme which exploits additional online input-state data to improve closed-loop performance. Numerical examples show the effectiveness of the proposed methods.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"183 \",\"pages\":\"Article 112612\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825005072\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825005072","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Data-driven min–max MPC for linear systems: Robustness and adaptation
Data-driven controllers design is an important research problem, in particular when data is corrupted by the noise. In this paper, we propose a data-driven min–max model predictive control (MPC) scheme using noisy input-state data for unknown linear time-invariant (LTI) system. The unknown system matrices are characterized by a set-membership representation using the noisy input-state data. Leveraging this representation, we derive an upper bound on the worst-case cost and determine the corresponding optimal state-feedback control law through a semidefinite program (SDP). We prove that the resulting closed-loop system is robustly stabilized and satisfies the input and state constraints. Further, we propose an adaptive data-driven min–max MPC scheme which exploits additional online input-state data to improve closed-loop performance. Numerical examples show the effectiveness of the proposed methods.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.